
Deep-Learning
Approaches in
Structure Based
Drug Design
for Binding Affinity
Prediction

Joseph Azzopardi

Supervised by Dr Jean-Paul Ebejer

Department of Artificial Intelligence

Faculty of ICT

University of Malta

April, 2021

A dissertation submitted in partial fulfilment of the requirements for the
degree of M.Sc. AI .

Copyright ©2021 University of Malta

WWW.UM.EDU.MT

First edition, Monday 12th April, 2021

Declaration by Postgraduate Students

(a) Authenticity of Dissertation

I hereby declare that I am the legitimate author of this Dissertation and that it is my
original work.
No portion of this work has been submitted in support of an application for another
degree or qualification of this or any other university or institution of higher education.
I hold the University of Malta harmless against any third party claims with regard to
copyright violation, breach of confidentiality, defamation and any other third party right
infringement.

(b) Research Code of Practice and Ethics Review Procedures

I declare that I have abided by the University’s Research Ethics Review Procedures.
As a Master’s student, as per Regulation 58 of the General Regulations for University
Postgraduate Awards, I accept that should my dissertation be awarded a Grade A, it
will be made publicly available on the University of Malta Institutional Repository.

Faculty/Institute/Centre/School Faculty of ICT

Degree M.Sc. AI

Title Deep-Learning Approaches in Structure Based
Drug Design for Binding Affinity Prediction

Candidate (Id.) Joseph Azzopardi (474488M)

Signature of Student

Date Monday 12th April, 2021

08.02.2018

To my wife, Candy

for the constant motivation, positivity, support, and endless love.

ix

Acknowledgements

I would like to thank and show my respect and appreciation to my supervisor
Dr Jean-Paul Ebejer for his great dedication, work ethic, enthusiasm, and commit-
ment throughout the whole journey. He has guided me through various interesting
discussions that have motivated me to bring out the best in me and pursue the best
outcome possible. His great talent to impart knowledge has spawned a curiosity
to research this domain, and his knowledge, ideas, and support were key to steady
progress to finish this dissertation.

My special thanks, goes to the team at AWS Research Credits Team for support-
ing our research and providing substantial credits to develop our models and run
our experiments, without which our work would have been much more difficult.

Last but not least, I would like to thank my whole family and close friends as
a source of motivation and encouragement; My wife, Candy for her love, patience,
and support, during the challenging times to balance work, university, and late
nights, whilst also raising our newborn baby angel Jasmine. I would like to take
the opportunity to thank my parents Charles and Mary for their never ending love,
that shaped me in the person I am today, and for keeping me in their thoughts and
prayers.

xi

Abstract

Scoring functions (SF) are the heart of structure based drug design, where they
are used to estimate how strongly the docked pose of a ligand binds to the target.
Seeking a SF that can accurately predict the binding affinity is key for successful
virtual screening methods. Deep learning (DL) approaches have recently seen a
rise in popularity as a means to improve the SFs having the key advantage to auto-
matically extract features and create a complex representation of the data without
feature engineering and expert knowledge.

In this study we present LigityScore, a rotationally invariant SF based on convo-
lutional neural networks (CNN). LigityScore descriptors are extracted directly from
the structural and interacting properties of the protein-ligand (PL) complex which
are input to a CNN for automatic feature extraction and binding affinity predic-
tion. This representation uses the spatial distribution of Pharmacophoric Interac-
tion Points (PIPs), derived from interaction features from the PL complex based on
pharmacophoric features conformant to specific family types (HBA, HBD, etc) and
distance thresholds. The data representation component and the CNN architecture
together, constitute the LigityScore SF. We define two variants of LigityScore — Lig-
ityScore1D considers a single distance from each combination of two PIPs from the
extracted ligand and protein PIP pools, and generates a feature vector for each phar-
macophoric family pair (example HBA-HBD) based on the distribution of the PIP
pair distances in discretised space. The different pharmacophoric family pair com-
binations are stacked to construct a matrix representation of the complex. Similarly,
LigityScore3D consider a 3-PIP combinations to create a triangular structure with
three distances between the PIPs, which are discretised to represent binning coordi-
nates for a 3D feature hypercube collection per pharmacophoric family set (example
HBA-HBD-HBD) describing the distribution of distances in 3D space.

The main contribution for this study is to present a novel PL representation
for use as a CNN based SF for binding affinity prediction. LigityScore models are
evaluated for scoring power on the latest two CASF benchmarks. The Pearson cor-
relation coefficient, and the standard deviation in linear regression were used to
compare LigityScore with the benchmark model, and also other models in litera-
ture published in recent years. LigityScore3D has achieved better overall results
and showed similar performance in both CASF benchmarks. LigityScore3D ranked
5th place in the CASF-2013 benchmark, and 8th in CASF-2016, with an average R-
score performance of 0.713 and 0.725 respectively. LigityScore1D obtained best re-
sults when trained using the PBDbind v2018 dataset, and ranked 8th place in the
CASF-2013 and 7th place in CASF-2016 with an R-score performance of 0.635 and
0.741 respectively. Our methods show relatively good performance that exceed the
Pafnucy performance, as one of the best performing CNN based SF, on the CASF-
2013 benchmark, using a less computationally complex model that can be trained
16 times faster.

Contents

1 Introduction 1
1.1 Virtual Screening . 3

1.1.1 Structure Based Virtual Screening 4
1.1.2 Ligand Based Virtual Screening . 5
1.1.3 Scoring Functions . 7

1.2 Motivation . 8
1.3 Aims and Objectives . 11
1.4 Proposed Solution . 12

1.4.1 Evaluation . 14
1.4.2 Contributions and Main Results . 15

1.5 Document Structure . 16

2 Background & Literature Overview 19
2.1 Structure Based Virtual Screening (SBVS) 19

2.1.1 Scoring Functions . 21
2.2 Artificial Neural Networks . 21

2.2.1 Deep Learning . 27
2.2.2 CNN . 28
2.2.3 Dropout . 37
2.2.4 Stochastic Gradient Descent . 39
2.2.5 Weight Initialisation . 42
2.2.6 Batch Normalisation . 43

2.3 Evaluation Criteria . 46
2.3.1 CASF Benchmark . 48

2.4 Related Work . 50

xii

Contents xiii

2.4.1 Classical Scoring Functions . 50
2.4.2 Machine Learning to improve Scoring Functions 52
2.4.3 Machine Learning Approaches . 53
2.4.4 Deep Learning Approaches . 55
2.4.5 Ligity Representation . 66
2.4.6 Recent ML approaches . 67
2.4.7 Influence on LigityScore . 69

2.5 Summary . 70

3 Methodology 71
3.1 LigityScore Implementation Overview . 71
3.2 Baseline for the Study . 74
3.3 Dataset . 75

3.3.1 Handling Incorrect Molecule Files 78
3.4 Pre-Processing Module . 80

3.4.1 Dataset Split . 81
3.5 PIP Generation . 82
3.6 Protein-Ligand Complex Representation . 86

3.6.1 LigityScore1D . 87
3.6.2 LigityScore3D . 90

3.7 Convolutional Neural Network Implementation 93
3.8 Experiments . 98

3.8.1 Molecular Representation Optimisation 100
3.8.2 CNN Hyperparameter Tuning . 101
3.8.3 Implementation Details . 104

3.9 Summary . 105

4 Results & Evaluation 107
4.1 Pafnucy Replication Results . 108
4.2 Baseline Results . 109
4.3 LigityScore Results and Discussion . 111

4.3.1 LigityScore1D . 112
4.3.2 LigityScore3D . 125

4.4 LigityScore Best Performance Results . 132
4.5 Evaluation . 135

4.5.1 Evaluation with Pafnucy . 136
4.5.2 CASF Scoring Power Benchmark . 138

xiv Contents

4.6 Summary . 141

5 Conclusions 143
5.1 Achieved Aims and Objectives . 144
5.2 Critique and Limitations . 146
5.3 Future Work . 148
5.4 Final Remarks . 148

Appendix A Media Content 151
A.1 LigityScore Scripts . 154

Appendix B LigityScore User Manual 157

Appendix C Experiment Details 161

References 167

List of Figures

1.1 Protein and Small Molecule Binding using Lock and Key Analogy. 1

1.2 High Level Drug Design Process showing virtual screening components. . . . 3

1.3 Virtual Screening Process for Machine Learning Predictive models. 4

1.4 Visualising Protein and Ligand Pharmacophore Hot-Spots. 6

2.1 Aritifial neuron as representation of biological Neuron 22

2.2 Feed Forward Neural Network iwth one hidden layer 23

2.3 2D Convolution without kernel flipping. 30

2.4 Convolution with multiple filters. 31

2.5 CNN Architecture . 32

2.6 A Convolution Layer. 32

2.7 The RELU activation function. 33

2.8 Neuron direct and indirect Connections. 38

2.9 Scoring Function showing differences between classical and ML functions.
Reproduced from Ain et al. (2015). 50

2.10 Physics-based classical scoring functions. 52

2.11 Deep Learning based scoring functions literature overview. 56

2.12 The Kdeep scoring function reproduced from Jiménez et al. (2018). 62

2.13 OnionNet boundary shells partitioning, reproduced from Zheng et al. (2019). 64

2.14 Ligity 3-PIP triangular structure mapping to hypercube reproduced from
Ebejer et al. (2019). 67

3.1 LigityScore schematic representation of the major functional blocks used in
our approach to develop a Scoring Function solution for VS. 72

3.2 Growth of the PDBBind Dataset over the years. 76

xv

xvi List of Figures

3.3 PDBBind venn-diagram showing the general, refined and cores sets, together
with how these were split up for training, validation and training. 78

3.4 PDBbind dataset Hot-Spots or PIP generation algorithm. 83

3.5 PDBBind molecular properties distributions including (a) Hydrogen Bond
Acceptors, (b) Hyrdogen Bond donors, (c) logP and (d) molecular weight. . . 84

3.6 Examples of PIPs on the 3ZZF target with NLD ligand. 85

3.7 PIP pair interaction between a donor protein PIPs (blue mesh), and an accep-
tor ligand PIP (red mesh). 87

3.8 Algorithm used for the Feature Generation Process for LigityScore1D and
LigityScore3D . 88

3.9 LigityScore1D Feature Matrix Generation. 89

3.10 LigityScore3D Feature Cube Collection Generation. 91

3.11 LigityScore3D 3-PIP binning coordinates . 92

3.12 CNN Architecture for LigityScore1D . 94

3.13 CNN Architecture for LigityScore3D . 94

3.14 High Level experiment workflow . 99

4.1 LigityScore 1D Baseline R-Score Performance. 111

4.2 LigityScore 1D Baseline RMSE Performance. 112

4.3 LigityScore 1D Baseline-with-BatchNorm and InstanceNorm R-score Perfor-
mance. 118

4.4 LigityScore 1D Baseline-with-BatchNorm and InstanceNorm RMSE Perfor-
mance. 119

4.5 Validation Set performance using different PIP threshold factors.. 120

4.6 LigityScore1D (v2016) best performing RMSE training and validation plots. . 121

4.7 LigityScore1D (v2016) best performing R-Score training and validation plots. 121

4.8 LigityScore1D (v2016) best performing training loss over 140 epochs 122

4.9 PDBBind v2016 experimental binding affinity distribution grouped by Train-
ing, Validation, and Test sets. 123

4.10 PDBBind v2016 predicted binding affinity distribution for best model. 123

4.11 Experimental Vs Predicted Binding Affinity for best LigityScore1D Model. . . 124

4.12 Validation Set Performance using different PIP threshold factors and Instan-
ceNorm. 126

4.13 LigityScore3D (v2016) best performing RMSE training and validation plots. . 127

4.14 Experimental Vs Predicted Binding Affinity Scatter plot for best LigityScore3D
Model. 129

List of Figures xvii

A.1 Media Content Directory Structure. 152

List of Tables

2.1 Summary of literature review. 57

3.1 PDBBind Protein-Ligand count summary. 78

3.2 PDBbind Summary showing final set counts. 79

3.3 Lipinski Rule of Five thresholds. 82

3.4 Pharmacophoric Features and Distance thresholds for PIP Generation. 86

3.5 Summary of parameters used for CNN models 96

3.6 Summary of Python 3.6 packages used. 105

4.1 Baseline parameters used for CNN models for LigityScore. 110

4.2 Performance of LigityScore 1D trained on PDBbind v2016. 114

4.3 Performance of LigityScore1D trained on PDBbind v2018. 116

4.4 Performance of LigityScore 3D trained on PDBbind v2016. 130

4.5 Average Performance of LigityScore1D and LigityScore3D. 134

4.6 LigityScore Evaluation with the original Pafnucy together with our imple-
mentation of the Pafnucy Model. 137

4.7 LigityScore Evaluation on the CASF-2013 Scoring Power benchmark. Our
results are highlighted in green achieving 5th and 8th places out of the scoring
functions listed in the CASF benchmark (black) and other literature that use
the same benchmark (blue) published after Li et al. (2014a). Only the top 20
scoring function of the CASF-2013 benchmark are included in this list. Full
table is available in the supplementary information of Li et al. (2014a). The
SF are ranked using the Pearson Correlation, R. 139

4.8 LigityScore Evaluation on the CASF-2016 Scoring Power benchmark. 140

xviii

List of Tables xix

C.1 LigityScore1D experiments details with corresponding Exp ID matching the
experiment results listed in 4 for Table 4.2 and Table 4.3. 162

C.2 LigityScore3D experiments details with corresponding Exp ID matching the
experiment results listed in 4 for Table 4.4. 165

List of Abbreviations

CADD Computer Aided Drug Design

VS Virtual Screening

DTI Drug Target Interactions

HTS High-throughput Screening

HBD Hydrogen-bond Donors

HBA Hydrogen-bond Acceptors

LBVS Ligand Based Virtual Screening

SBVS Structure Based Virtual Screening

DBVS Docking Based Virtual Screening

PIP Pharmacophoric Interaction Points

FDA US Food and Drug Administratiom

PL Protein Ligand

SF Scoring Function

PDB Protein Data Bank

CASF Comparative Assessment of Scoring Functions

NN Neural Networks

FF Feed Forward

DL Deep Learning

ANN Artificial Neural Networks

DNN Deep Neural Networks

RNN Recurrent Neural Networks

CNN Convolution Neural Network

FC Fully Connected

xxi

xxii List of Abbreviations

ReLU Rectified Linear units

tanh Hyperbolic Tangent

PReLU Parametric Rectified Linear Unit

SGD Stochastic Gradient Descent

RMSE Root Means Squared Error

MAE Mean Absolute Error

SD Standard Deviation in Linear Regression

AMI Amazon Machine Image

AWS Amazon Web Services

EC2 Elastic Cloud Computing

GPU Grpahics Processing Unit

GBT Gradient Boosting Trees

IFP Interaction FingerPrint

PLEC Protein-Ligand Extended Connectivity

ECFP Extended-Connectivity FingerPrints

1

Introduction

Proteins are complex molecules made up of combinations of naturally occurring amino
acid chains. Proteins perform many critical functions in the body such as facilitate chem-
ical reactions, provide structure and support for cells, enable signaling, and perform reg-
ulation functions. Drug discovery is a process used to identify small molecules which
elicit the desired biological response when they bind to target proteins. This bioactivity
in the form of a chemical reaction either activates or inhibits a biological function thus
acting as a drug to the body. Figure 1.1 illustrates the concept of the small molecule
binding to the protein representing the lock and key analogy. The small molecule has
the right fit for binding with the protein at its binding site. A small molecule that phys-
ically binds to the protein is termed as a ligand.

Figure 1.1: Protein and Small Molecule Binding using Lock and Key Analogy.

Computer-Aided Drug Design (CADD) methods have seen a rise in popularity for
drug discovery processes in recent years due to the unprecedented amount of data avail-
able together with the advent of powerful computational tools available such as cloud

1

Chapter 1. Introduction

computing platforms (Rifaioglu et al., 2018). CADD methods have recently been suc-
cessfully applied in various stages of the drug development pipeline. These include hit
identification and lead optimisation (Ma et al., 2015; Ragoza et al., 2017), binding affinity
prediction (Jiménez et al., 2018; Stepniewska-Dziubinska et al., 2017), ADMET (absorp-
tion, distribution, metabolism, excretion, and toxicity) properties’ prediction such as
the work done by Mayr et al. (2016) on toxicity prediction, and also de novo (Gómez-
Bombarelli et al., 2018) methods.

The chemical space is huge and it is estimated that there are 1060 molecules that
are relevant for drug discovery (Kirkpatrick and Ellis, 2004). It is difficult to clinically
test large chemical spaces for potential Drug Target Interactions (DTI) and therefore
computational methods such as Virtual Sceening (VS) can be used as the first filtering
process to test activity between protein target and small molecules (Cheng et al., 2012).
High-throughput screening (HTS) is a widely used approach for hit and lead genera-
tion across pharmaceutical companies for the early stages of drug development, as it
provides the ability to perform biochemical assays on millions of molecules. However,
its low success rate, high cost, and lack of availability for advanced laboratories capable
of HTS experiments, have motivated the industry and researchers to seek out in silico
computational methods for VS (Cheng et al., 2012). The high level process of drug de-
sign is illustrated in Figure 1.2, where the VS methods are shown to be applied before
HTS as the first step to filter out unlikely drug-target pairs. HTS experiments are expen-
sive and time consuming so filtering out unlikely molecules will accelerate and reduce
this costly process. Hopkins (2009) have estimated that the cost to develop a single drug
was around 1.8 Billion US dollars over a time span of 13 years on average (Rifaioglu
et al., 2018).

Computational methods in drug design can thus assess potential DTI and provide
the ability to screen libraries that include millions of compounds, which would oth-
erwise be unfeasible. VS is applied instead of HTS as illustrated in Figure 1.2 for hit
identification, however in some cases HTS is also applied after VS for further filtering
and lead molecule generation (Rifaioglu et al., 2018). After lead optimisation, the po-
tential drug would need to pass a series of rigorous clinical trials before being finally
approved.

In this dissertation we apply convolution deep learning models to enhance the bind-
ing affinity prediction for scoring functions applied to a protein-ligand complex in VS.
Our approach introduces two techniques, LigityScore1D and LigityScore3D that are based
on the Ligity method (Ebejer et al., 2019), that make use of important structural features
of both the protein and ligand to create a suitable data representation of the protein-
ligand complex. This representation is then used to feed the convolution neural network

2

Chapter 1. Introduction 1.1. Virtual Screening

to train a model as a scoring function for prediction of binding affinity.

Figure 1.2: High Level Drug Design Process showing virtual screening components.
Adapted from Rifaioglu et al. (2018).

1.1 | Virtual Screening
Virtual Screening (VS) is one of the CADD methods that are used to predict chemical
activity of small molecules on target proteins in silico. VS is considered a critical early
step in the drug design process for the discovery of innovative leads (Cheng et al., 2012).
VS is practically the computational equivalent to biological screening, and is used in the
same way to sift molecule libraries and identify potential molecules that will show bio-
logical response. The VS algorithm would typically rank the library of molecules under
test based on their biological activity, using the binding affinity half-concentration con-
stant, IC50. IC50 is a quantitative measure showing the concentration required to inhibit
50% of the biological activity of the protein. Molecules which are below the designated
IC50 threshold are potential active molecules also known as hits. A smaller value of
IC50 represents a higher binding affinity since a smaller concentration is required to
sustain the protein-ligand interaction. Based on the work of Wójcikowski et al. (2017)
an IC50 < 25µM shows bioactivity. The other molecules, which are above threshold,
are referred to as inactives as they show little biological response and therefore are dis-
carded. These hits are allowed to progress to the next phase of drug development for
further testing and lead molecule identification.

VS is a cheaper and faster alternative to HTS, however it is used as a complementary
approach as illustrated in Figure 1.2. Machine learning techniques can be used to gener-
ate models for predicting bioactivity. Figure 1.3 shows the typical process involved in a

3

Chapter 1. Introduction 1.1. Virtual Screening

feature-based VS method which include dataset collection, pre-processing of molecules,
feature extractions, followed by training and evaluation of the predictive model.

VS is commonly divided into three main approaches, namely i) Structure-based Vir-
tual Screening (SBVS), ii) Ligand-Based Virtual Screening (LBVS), and iii) Hybrid VS
methods where multiple approaches are combined together.

Figure 1.3: Virtual Screening Process for Machine Learning Predictive models. Adapted
from Rifaioglu et al. (2018).

1.1.1 | Structure Based Virtual Screening
Structure-based drug design uses the known 3D protein structure to apply computa-
tional methods that measure the ability of a small molecule to bind to the target protein
structure (Ching et al., 2018). SBVS requires in-depth structural details of the target pro-
teins made available experimentally by advancements in recent years in X-ray crystal-
lography and nuclear magnetic resonance spectroscopy, or by computational modelling
(Cheng et al., 2012).

A docking program is normally an integral part of SBVS and is used to validate the
ability of the small molecule to bind to the target structure in a typical ’lock and key’
(Figure 1.1) fashion (Ching et al., 2018). During the docking process as many possible
ligand orientations, or conformers, are iteratively validated at the binding site to find
a suitable ligand pose yielding the best binding affinity. The binding affinity and the
strength of the particular pose is determined by the scoring function of the docking
program. The docking algorithm needs to tackle a number of challenges for success-
ful simulation of ligand-target interaction such as i) the role of water molecules at the
binding site, ii) protein and ligand flexibility (ability to change molecules’ orientation at

4

Chapter 1. Introduction 1.1. Virtual Screening

rotational bonds), iii) metal ions, and iv) the effectiveness of the scoring function used
to assess the fitness of the docked pose. From the above mentioned challenges, flexi-
bility of the molecules creates additional complexity as they involve many degrees of
freedom for translation and rotation creating a huge number of potential poses. This
type of virtual screening is also termed docking-based virtual screening (DBVS) and is
arguably the most applied method in SBVS (Cheng et al., 2012). Amongst the most pop-
ular docking methods mentioned by Tuccinardi (2009) there are Autodock (Trott and
Olson, 2010), Autodock4 (Morris et al., 2009), Dock (Ewing et al., 2001), Glide (Friesner
et al., 2004) and Gold (Jones et al., 1997).

1.1.2 | Ligand Based Virtual Screening
Ligand Based Virtual Screening (LBVS) is used when only the active molecule is known.
The properties of known ligands are used to search for similar molecules and LBVS
relies on the principle that similar molecules should also produce activity to some ex-
tent. The open question in LBVS is how to define and measure similar molecules,
as the similarity is dependent on the representation used for the molecules. In LBVS
the most popular methods for molecule representation include fingerprints, pharma-
cophore modelling, QSAR (Quantitative Structure-Activity Relationship), and Ultra-
Fast Shape Recognition (USR) Ebejer et al. (2019). Fingerprints represent a vector of
features describing the ligand and can be in the binary form to represent presence or
absence of the ligand features such as presence of donors. Fingerprints can also include
non-binary terms such as counts of features such as aromatic rings, or rotatable bonds.

A key aspect used in this study was derived from pharmacophore modeling molecule
representation inspired by the work of Ebejer et al. (2019). As described by Gund (1977),
a pharmacophore is "a set of structural features in a molecule that are recognised at the
binding site and is responsible for that molecule’s biological activity". Therefore a phar-
macophore model represents a number of general structural features such as hydrogen-
bond donors (HBD), hydrogen-bond acceptors (HBA), or hydrophobic regions within
the molecule, which are used to identify the features at the binding site that are respon-
sible for molecular binding and biological activity. These features at the binding sites
may be used to find strong molecular binding interactions or hot-spots in the molecule
which are used to extract fingerprint descriptors to represent the molecule. As indicated
by Leach et al. (2010) these features can be used in a 3D pharmacophore model and the
spatial relationship between these pharmacophoric features can also be used to repre-
sent the molecule. This representation for using pharmacophore keys (or fingerprints)
can be extended to include also the protein pockets Leach et al. (2010). An example

5

Chapter 1. Introduction 1.1. Virtual Screening

a) 3ZZF Target and NLG Ligand b) 3ZZF Target and NLG Ligand with Hot-Spots

c) 3ZZF Target with Hot-Spots and NLG Ligand d) 3ZZF Target and NLG Ligand with Hot-Spots

Figure 1.4: Protein and Ligand Pharmacophore Hot-Spots used in LigityScore. Figure
(b) shows hot-Spots for the ligand only whilst, Figure (c) shows those at the protein only.
Their combination, as shown in Figure (d) will be used to extract unique combinations
of Pharmacophoric Interaction Points (PIPs). Each coloured mesh represents a different
pharmacophore family type. For example the blue mesh represents Donor atoms, whilst
the red mesh represent Acceptor atoms.

of pharmacophoric hotspot features are illustrated in Figure 1.4 for the 3ZZF protein,
and NLG ligand. Each coloured mesh surrounding different groups of atoms represent
a different hot-spot features; for example the red atom mesh represent Acceptors, blue

6

Chapter 1. Introduction 1.1. Virtual Screening

atom represent Donor atoms, whilst green atom mesh represent a Lumped Hydrophobe.
This combination of fingerprints of both ligand and proteins was used as the basis of
the feature representation in our approach and is described in detail in Section 3.

Our approach can be categorised as Hybrid since a ligand based technique is adapted
for a structure based technique to to find a suitable representation of the protein-ligand
(PL) complex to construct a scoring function for docking in SBVS.

1.1.3 | Scoring Functions
A scoring function (SF) is an important component in structure-based drug design and
can be defined as “Estimating how strongly the docked pose of a ligand binds to the tar-
get” (Ain et al., 2015). The scoring function is a crucial component to docking programs
as it tells us how good the small molecule binding is. Therefore, optimising the ability
of the scoring function to assess the binding capability between a protein and a ligand,
helps improve the performance of docking programs, which in turn improves the ef-
fectiveness of drug discovery in SBVS methods. The work in this dissertation focuses
directly on the scoring function layer of SBVS and tackles this problem by applying a
Convolution Neural Network model to implement the algorithm of the scoring func-
tion.

The prediction of binding affinity is a regression problem where the model learns
the salient information of the input features to output a value of binding affinity. The
binding affinity prediction model can then be used in SBVS for classification of the small
molecule as inactive or active. Although computational methods has been used in drug
design for over three decades, accurate prediction of binding affinity still remains an
open problem in computational chemistry (Ching et al., 2018).

The binding affinity constants such as half-concentration (IC50), dissociation (Kd), or
inhibition (Ki) are used to measure the binding affinity. Smaller values for these constants
result in a stronger binding affinity and the more probable that the small molecule is
able to bind the protein. Typically, a small molecule is termed as binding when the
affinity is 1µM or better (Wójcikowski et al., 2017). Therefore a SF is typically used to
screen millions of small molecules as a “quick and dirty” approach to rank the top PL
interactions for lead generation.

The SF is used in the following areas for hit and lead discovery and optimization in
SBVS and is considered the foundation in structure-based drug design (Ragoza et al.,
2017):

1. Pose prediction: Predict binding mode or best binding pose of the ligand for pose

7

Chapter 1. Introduction 1.2. Motivation

generated as part of the Molecular Docking process. Each ligand pose is evalu-
ated at the binding site, and the pose with the best binding affinity is selected.
Therefore the scoring function is as described by (Cheng et al., 2012) the "heart of
molecular docking".

2. Ranking: Ranking of molecules of known pose in order of the binding strength
for a given protein target.

3. Classification: classification if a small molecule is active or inactive for a given
target protein.

Classical SF, that do not include any form of machine-learning, such as the popular
Autodock Vina (Trott and Olson, 2010) use the SF function for all of the above areas. In
this study the scoring aspect in SBVS will be considered and analysed to be enhanced
using machine-learning (ML), specifically using deep-learning (DL) techniques.

1.2 | Motivation
Scoring functions are typically used for fast evaluation of protein-ligand interactions,
so building an efficient and powerful SF is a means of accelerating the virtual screen-
ing process. Intense research has been done over the years on this problem, however
improving the accuracy for binding affinity prediction is shown to be a non-trivial task
(Ain et al., 2015).

Optimizing and developing a binding affinity prediction SF is still an open problem
with many challenges. One of the main challenges is the huge chemical space avail-
able. In order to quantify and qualitatively compare the huge chemical space, Valler
and Green (2000) compared the approximate estimate of possible drug molecules (1060),
to the number of seconds elapsed since the Big Bang which is only 1017 seconds. This
massive space makes even the most ambitious molecular sampling companies, fated
to a hopeless endeavour using HTS and also ultra-HTS techniques (Valler and Green,
2000). This has shifted the focus to computational methods and the use of ML and DL
Techniques.

Although there is a huge chemical space available, Rifaioglu et al. (2018) claim that
there are only around 9,600 small molecule FDA (US Food and Drug Administration)
approved drugs. Therefore there is a huge opportunity for discovery of potential new
drug leads within this huge chemical space, but at the same time confirms the difficulty
of the drug discovery process. The current computational power is still not sufficient for
an exhaustive search in all chemical space as discussed by Kirkpatrick and Ellis (2004).

8

Chapter 1. Introduction 1.2. Motivation

Another challenge deals with the limited data available in the current datasets. Molec-
ular datasets such as PDBbind (Liu et al., 2017b), only include a small subset of the
whole chemical space. Thus, such datasets are not a true representation of the whole
chemical space. However, Kirkpatrick and Ellis (2004) argued that most of this space is
actually not of biological interest, and therefore the current known chemical space can
be used to search for other similar molecules since we know these can bind. However,
Kirkpatrick and Ellis (2004) concluded that new molecules are still hard to find.

Additionally, the current datasets such as the PDBbind (Liu et al., 2017b) lack infor-
mation related to experimentally tested inactive molecules. As commented by Sieg et al.
(2019), there is limited documentation on experimentally validated inactives. For this
reason, some artificially generated decoys are used to simulate inactive molecules. Al-
though these are not verified most of the decoys created are assumed inactives, although
these might add false negative bias (Sieg et al., 2019). Due to this lack of documentation
there are no datasets that include the binding affinity of an inactive molecules. This cre-
ates an additional challenge since it is difficult to include inactive molecules in the SF
training since binding data is not available. However such challenges lend themselves
to huge opportunities to drive and motivate further research to explore this chemical
space in the quest for drug discovery.

Our work on the development of the SF is based on Deep learning (DL) techniques.
DL is a class of machine learning algorithm that are composed of multiple layers of arti-
ficial neural networks (ANN). DL methods aims to reduce feature engineering or feature
selection and automatically extract the salient feature information from the input data,
provided it is a suitable representation of the molecular interactions between the protein
and ligand (Pérez-Sianes et al., 2019). Therefore, the strategy is to allow deep learning
models to learn the underlying physics of the molecular interactions so that this learned
information can be reapplied to other protein targets for exploration of a novel ligands,
without the need to incorporate expert chemical knowledge. The shift from human
expert knowledge to automatic feature extraction make such computational methods
within reach to more researchers which provides accelerated improvements in this area
as witnessed in the last years, whilst also improving on the ability to ingest more and
more data for VS.

DL models have achieved remarkable success in various areas such as computer vi-
sion (Szegedy et al., 2015) and natural language processing (Goldberg, 2016). Inspired
by this work, the use of DL and in particular CNN have naturally become an obvious
strategy to apply for CADD as well (Chen et al., 2018). Deep Learning for drug dis-
covery was first introduced during the 2012 Merch Kaggle challenge (Kag, 2012). This
was later on published by Ma et al. (2015) where the authors introduced a Deep Neural

9

Chapter 1. Introduction 1.2. Motivation

Network (DNN) using multi-task deep ANN for QSAR LBVS. Ma et al. (2015) achieved
for the first time better results than the standard Random Forest (RF) models with a
relative improvement of 15%, which was the best performing ML model in VS before
introduction of DL techniques.

Since protein-ligand complexes are 3D structures, their representation can include
multi-dimensional tensors. CNNs are known to process multi-dimensional inputs, such
as colour images, successfully to extract the relevant features and achieve remarkable
accuracy (Szegedy et al., 2015). Similarly, CNNs can be used to extract features for
protein-ligand complexes that are represented by multi-dimensional tensors. CNNs are
also able to capture the spatial placement of features as described by Goodfellow et al.
(2016), which can be an important factor to extract interactions features from 3D struc-
tures such as the protein-ligand complexes. For these reasons, and the success achieved
with CNNs in the works of Jiménez et al. (2018) and Stepniewska-Dziubinska et al.
(2017) we have chosen the CNN as the main DL model to use for automatic features
extraction from our multi-dimensional representation of the protein-ligand complexes.

ML methods and later on DL methods have been shown to improve the performance
of SF used for structure-based drug design (Ain et al., 2015). In particular the work
of Jiménez et al. (2018) and Stepniewska-Dziubinska et al. (2017) have recently devel-
oped a scoring function based on Convolutional Neural Networks (CNN) where they
achieved a state of the art Pearson Correlation Coefficient, R, of 0.82 and 0.77 respec-
tively between the actual and predicted binding affinities on the PDBbind v2016 (Liu
et al., 2017b) dataset. The Pafnucy model developed by Stepniewska-Dziubinska et al.
(2017) is used as a baseline model. The success achieved by Pafnucy and its source code
availability are the main reasons for motivating us to choose Pafnucy for our baseline
model. The availability of their source code made it possible to obtain a deep under-
standing in the workings of their models, so that a like with like comparison can be
made with our developed methods. This would also allow us to perform a better eval-
uation. The baseline model is discussed in more detail in Section 3.

A major challenge faced by Jiménez et al. (2018) and Stepniewska-Dziubinska et al.
(2017) was the requirement of training a CNN model that can handle different views
or snapshots of the same representation. If the orientation from where the snapshot
is taken is changed, a different representation of the same thing is obtained, since the
protein-ligand complex is a 3D structure. The authors have worked around this limi-
tation by introducing different systematic rotations of the same input during training.
However, these might present additional challenges when testing novel complexes that
can take different orientations. This limitation has led us to explore methods that are
inherently rotationally invariant. The Ligity (Ebejer et al., 2019) method is based on

10

Chapter 1. Introduction 1.3. Aims and Objectives

the spatial distance distribution between different set of pharmacophoric interactions
points. Since these distances remain the same irrespective of the orientation of the
structure, the Ligity method is inherently rotationally invariant. The Ligity method was
shown to be successful for a virtual screening exercises using similarity measures. The
facts that the method is rotationally invariant and that it has not been used for a scoring
function application using DL have motivated us to explore the method so that we can
apply it to a scoring function application.

1.3 | Aims and Objectives
This dissertation answers the following research question:

Can deep learning approaches be used in scoring functions to augment the predictive
scoring power in SBVS techniques?

This research question will be mainly tackled from two aspects to improve the predic-
tive scoring power.

1. Can the deep learning architecture be optimised to improve the SF performance?

2. Which input features should be used to find a suitable representation of the protein-
ligand complex that can represent the binding interactions and provide good pre-
diction performance? The choice of representation of the protein-ligand structure
will determine the flexibility and expressiveness that the model is able to learn
and ultimately its scoring power. Although DL methods extract features automat-
ically during training, correct representation of the complex is still required and
the chosen representation impacts the feature extraction ability of the DL model.

Therefore, the predictive scoring power effectiveness depends greatly on these two
aspects. Improving the scoring power can therefore enhance the successful discovery of
drugs, where only the top ranked molecules are experimentally tested saving both on
time and cost. Wang and Zhang (2017) claim that the SF is the most critical component
for docking, and that a high binding affinity between small molecule and reception is
one of the major selecting criteria in drug discovery. To reach the aims described above,
the following objectives are tackled:

� Replicate the work of Pa f nucy (Stepniewska-Dziubinska et al., 2017) to create a
baseline model for a scoring function for comparison and evaluation purposes.

11

Chapter 1. Introduction 1.4. Proposed Solution

� Apply representation engineering to develop different DL input features such as
protein ligand complex representation using modified Ligity (Ebejer et al., 2019)
features applied for binding affinity prediction. Details on the proposed features
are highlighted in Section 1.4, and detailed in Section 3.

� Evaluate different CNN architectures to find the best binding affinity prediction
model for use with the LigityScore feature representation.

� Hyper-parameter optimisation of the CNN model and the protein-ligand complex
feature representation.

� Use the Comparative Assessment of Scoring Functions, CASF-2013 (Li et al., 2018)
and CASF-2016 (Su et al., 2018), and other models found in literature such as Kdeep

(Jiménez et al., 2018) and Pafnucy (Stepniewska-Dziubinska et al., 2017) to rank
the scoring power for the model developed. Details of the CASF benchmarks is
discussed in Section 4.5.2.

1.4 | Proposed Solution
The first step taken in this dissertation was to replicate and confirm the results obtained
by Pafnucy (Stepniewska-Dziubinska et al., 2017) in order to establish a baseline model
for our study. The Pafnucy model uses 4D tensors in order to store the atom properties in
the 4th dimension where the first three dimensions represent the position of the atom on
the grid. This representation is used to construct a 3D CNN model for binding affinity
prediction.

The high level process described in Figure 1.3 is used in our approach to develop
a ML model for a scoring function for VS. This process can be split up into two ma-
jor tasks i) generate a protein-ligand representation, and ii) design and implementa-
tion of the DL model. The first task dealt with finding a suitable representation for the
protein-ligand complex and our approach is based on the pharmacophoric features in-
troduced in Section 1.1.2. The pharmacophores include quite general structural features
focused at the binding site of the protein-ligand complex which include features such
as hydrogen-bond acceptors, hydrogen-bond doners, and hydrophoic regions amongst
the most popular features (Leach et al., 2010).

In our representation the 3D structure of experimentally validated ligand and the pro-
tein pockets complexes are considered. Protein pockets are used as they represents the
area of the binding site of the protein. The open-source cheminformatics package RD-
Kit (Landrum, 2020) is used to load the 3D molecule structures and search for these

12

Chapter 1. Introduction 1.4. Proposed Solution

interesting structural features that interact between the protein and the ligand. These
interacting features are defined as Pharmacophoric Interaction Points (PIPs) and also
are referred to as "hot-spots". Figure 1.4 shows such hot-spots for protein 3ZZF and lig-
and NLG focused at the binding site as the area of interest. The spatial distribution of
the PIPs between combinations of hot-spots shown in Figure 1.4 are used as the basis
for feature representation of the protein-ligand complex.

In our approach we have therefore hypothesised that these pharmacophoric interac-
tions across different feature types contain key information to suitably represent the pro-
tein ligand structure and their binding properties. We have further hypothesised that
this representation would be suitable to train a deep learning model for binding affinity
prediction. To this effect we present two methods LigityScore1D and LigityScore3D that
utilise pharmacophoric interactions to build a scoring function based on deep neural
networks. This approach was inspired by the work done in Ligity (Ebejer et al., 2019)
where pharmacophoric features were used to create a hybrid virtual screening method.

The second task dealt with finding the best CNN architecture to fit the new repre-
sentation of the protein-ligand complex, and then optimise this network using hyper-
parameter tuning. The CNN approach was inspired by the methods of Stepniewska-
Dziubinska et al. (2017) and Jiménez et al. (2018) being amongst top performing scoring
function. The Pytorch open-source ML framework was used to build all CNN models.

LigityScore1D uses this pharmacophoric representation to extract a matrix of phar-
macophoric distances to be used as input to the CNN model. The size of this matrix
depends on the maximum distance threshold applied between pharmacophoric fea-
tures, and the number of possible combination of different pharmacophoric features.
For a maximum distance of 20Å that is discretised at 1Å resolution the size of the CNN
input matrix has an input dimension of 21× 21. Distance between each PIP combina-
tion is used to increment the count at a particular discrete value for a particular feature
combination. Therefore each row within the matrix represents the counts of discretised
distances for a particular pharmacophoric combination. In LigityScore1D 21 possible
pharmacophoric feature combinations were possible, hence the 21 × 21 input dimen-
stion.

LigityScore3D uses a similar approach to the LigityScore1D method mentioned above
however a combination of 3-PIPs are used. A combination of 3-PIPs provide three dis-
tances between PIPs, which are discretised and used as coordinates to increment the
count of the corresponding voxel in a 3D feature matrix representation. The input size
for LigityScore3D is also built using two parameters, namely the max distance allowed
between PIPs, and the number of possible pharmocophoric feature combinations. Lig-
ityScore3D has a total of 56 possible feature combinations, and assuming also a maxi-

13

Chapter 1. Introduction 1.4. Proposed Solution

mum distance of 20 angstrom and a distance discretisation of one angstrom, the Ligi-
tyScore3D input size is of (56× 21)× 21× 21. This 3D feature matrix was reshaped to
98× 98× 54 for a better representation for the input of the CNN model.

The scoring function is a regression type of problem and therefore the output of the
model is a single continuous number representing the predicted binding affinity for the
given protein-ligand complex representation. During training this is compared with
the real values of binding affinity so that the weights of the model are updated using
stochastic gradient descent using ADAM optimisation. To the best of our knowledge
this is the first approach that utilises spatial distances between PIPs to build a protein-
ligand representation to be used for scoring functions.

The CNN model used contains multiple convolutional layers with a combination of
pooling layers, which are followed by multiple fully connected layers. Each convolu-
tional layer utilises a set of several small filters or kernels, of size 5× 5 for a 2D input,
which are used to scan the input volume across its dimensions, using this small recep-
tive field. These filters are randomly initialised and their parameters are updated during
training. The subsampling or pooling layers are used for dimensionality reduction of
the features, so that a latent representation of the input is provided at the end of the
convolution layers which has a suitable dimension to be used as input to the Fully Con-
nected (FC) layers. A number of experiments were done to find the CNN architecture
that provides the best output results, and several techniques were used to augment the
performance of the CNN have been used such as dropout, convolution dropout, and in-
stance normalisation. These experiments are discussed in detail in Chapter 3. All CNN
models were run on AWS EC2 cloud computing platform using G4 type instance.

1.4.1 | Evaluation
LigityScore is evaluated for the scoring power component of the CASF-2013 (Li et al.,
2018) and CASF-2016 (Su et al., 2018) benchmarks. The benchmarks use the Core-2013
and Core-2016 test sets composed of high quality complexes from the PDBbind v2013
and v2016 datasets respectively. The rest of the PDBbind protein-ligand complexes are
used for the training and evaluation sets. The CASF benchmarks were designed pur-
posely as a benchmark for scoring functions as a means to evaluate the performance
of the SF more precisely. The authors in Li et al. (2018) and Su et al. (2018) claim that
the performance of a scoring function should be measured outside the context of molec-
ular docking tests, as this approach is not the best evaluation method for SFs as they
can be effected by other factors involved in docking. CASF-2016 (Su et al., 2018) is
the latest contribution to the benchmark where the authors have made significant im-

14

Chapter 1. Introduction 1.4. Proposed Solution

provements over the CASF-2013 including a larger test set. The CASF benchmarks have
been used in various studies including Stepniewska-Dziubinska et al. (2017), Wang and
Zhang (2017), Zheng et al. (2019), and Boyles et al. (2020). These benchmarks are used
for objective assessment and evaluation of LigityScore. Additionally, the LigityScore
performance is also compared to other literature such as Stepniewska-Dziubinska et al.
(2017), Jiménez et al. (2018) and Zheng et al. (2019) that are evaluated using the same
benchmarks.

LigityScore performance is also evaluated with our own implementation of Pafnucy
Stepniewska-Dziubinska et al. (2017) as the chosen benchmark model as it is one of the
best performing CNN based scoring functions. The metrics that are used to assess the
predictive performance of LigityScore include: i) Pearson correlation coefficient (R), ii)
Standard deviation in linear regression (SD), iii) Mean Absolute Error (MAE), and iv)
Root Mean Square Error (RMSE) measured from predicted and real binding affinity val-
ues. Over the recent years the PDBbind dataset has had considerable updates and con-
tains thousands of experimentally validated Protein-Ligand complexes with bioactivity
data. The availability of larger datasets containing compound activity and biomedical
data have lead to the increase in use of data-hungry algorithms especially deep learning
(DL) models for the development of new scoring functions.

1.4.2 | Contributions and Main Results
LigityScore1D and LigityScore3D show good results in binding affinity prediction with
an average pearson correlation coefficient of 0.741 and 0.725 when tested on the Core-
2016 set, and 0.635 and 0.713 respectively when tested on the Core-2013 set. Whilst
the Core-2016 difference in results for the two methods is only 0.016, LigityScore3D has
outperformed LigityScore1D by 0.078 for the Core-2013. Therefore, LigityScore3D has
achieved better overall results as it showed similar performance for both CASF-2016
and CASF-2013 benchmarks.

These results were also evaluated on the latest two CASF benchmarks. The Pearson
correlation coefficient, and the standard deviation in linear regression were used to com-
pare LigityScore with the benchmark model, and also other models in literature pub-
lished in recent years. The scoring functions from both the benchmark, and the litera-
ture reviewed were compiled in an updated list in order to provide a better understand-
ing of LigityScore performance across a comprehensive list of SFs. With these above
mentioned results LigityScore3D ranked 5th place in the CASF-2013 benchmark, and 8th

in CASF-2016, where it managed to outperform the Pafnucy (Stepniewska-Dziubinska
et al., 2017) method, as one of the best performing CNN based scoring function, in the

15

Chapter 1. Introduction 1.5. Document Structure

CASF-2013 benchmark.

Although our methods do not outperform current state of the art methods, we still
managed to find a suitable protein-ligand representation based on pharmacophoric hot-
spots and this represents our main contribution in the CADD domain. Additionally, our
method uses a rotational invariant approach since it is based on distances between hot-
spots that do not depend on the orientation of the complex, as opposed to the methods
of Stepniewska-Dziubinska et al. (2017), and Jiménez et al. (2018) where the feature
representation relies on the 3D orientation of the PL complex. Therefore our approach
provides an alternative view for tackling this problem, which to our knowledge was
not explored in other literature and thus provides a novel approach to the problem of
binding affinity prediction in SBVS.

1.5 | Document Structure
The ’Background and Literature Overview’ is discussed in Chapter 2 and presents com-
prehensive background information on SBVS and the CNN, as the chosen deep learning
model to implement LigityScore. The related work section focuses on on scoring func-
tions and provides a review of classical methods, ML learning models, and delves into
more detail on DL approaches. The latest literature and developments on scoring func-
tions is also presented and discussed, highlighted the current state of the art results. The
influence of the presented literature on the development of LigityScore is also discussed.

The ’Methodology’ details are presented in Chapter 3 which focuses on the work
done to implement the proposed solution to achieve the listed aims and objectives. This
chapter describes in detail the feature extraction techniques to generate the LigityScore
protein-ligand representation, the datasets and cheminformatics libraries used, together
with the design choices and supporting arguments for the CNN architecture used. The
steps or building blocks for LigityScore are also described in detail.

The ’Results and Evaluation’ outlined in Chapter 4, present the results obtained for
binding affinity predictions for the various experiments performed, and their evalua-
tion. The experiments include changes to both the protein-ligand complexes feature
representation, and also to the CNN architecture components of the model. The experi-
ments performed and their impact are discussed in detail to explain how the final solu-
tion was developed. The ’Evaluation’ in Section 4.5 details the evaluation methods used
for Scoring Functions and compares the LigityScore performance with our implementa-
tion of Pafnucy. LigityScore is also evaluated with the lastest Comparative Assessment
of Scoring Functions benchmarks, namely the CASF-2013 (Li et al., 2018) and CASF-2016

16

Chapter 1. Introduction 1.5. Document Structure

(Su et al., 2018), and other recent literature that also use the same benchmarks.
Finally, Chapter 5 concludes with a summary of the research performed during this

study and discusses the aims and objectives achieved. This chapter also highlights con-
tributions to the field, presents a critique to our proposed solutions and highlights any
future work that may be performed.

17

2

Background & Literature Overview

The following chapter provides background information on the scoring functions for
SBVS and various aspects of the CNN that are used for the development of our scor-
ing function model. Various aspects of virtual screening were mentioned in Chapter 1
to provide the reader with an initial understanding of the domain and problem being
tackled from the onset. However, additional detail focusing on scoring functions are
also discussed in Section 2.1, whilst Section 2.2 provides a detailed analysis on artificial
neural networks (ANN) and the CNN. Section 2.3 describes the evaluation criteria that
are used to assess the experiments performed detailing a description of the metrics and
benchmark used. The last section focuses on the related work and discusses in brief the
history of the scoring function (SF) in SBVS, and details the work done in the area using
ML and DL techniques, providing the current state of the art research.

2.1 | Structure Based Virtual Screening (SBVS)
Virtual Screening (VS) is one of the CADD methods that are used to predict chemical
activity of small molecules on target proteins in silico. VS is considered a critical early
step in the drug design process for the discovery of novel molecular entities (Cheng
et al., 2012). VS is practically the computational equivalent to biological screening, and
is used in the same way to sift molecular libraries and identify potential molecules that
will show biological response. Conventionally, HTS methods are used to synthesize
and screen ligands against a target protein for hit identification. Such process is slow
and expensive making it an unfeasible approach to screen libraries with millions of
compounds. Thus, VS methods are a suitable alternative for cheap, rapid assessment of
the molecular libraries. The biological response of molecules on target proteins is mea-
sured using the binding affinity half-concentration constant, IC50. The binding affinity

19

Chapter 2. Background & Literature Overview 2.1. Structure Based Virtual Screening (SBVS)

represents the strength in association, and IC50 is a quantitative measure showing the
concentration required to inhibit or activate 50% of the biological activity of the protein.
A VS algorithm ranks the molecules under tests based on the predicted binding affinity
to find potential active molecules also known as hits.

Assessment of the efficacy of virtual screening algorithms is normally applied using
retrospective virtual screening, where the dataset consists of compounds that are pre-
categorised into actives and decoys. VS algorithms that are successful in identifying
known actives can then be used in prospective VS so that new uncategorised test com-
pounds can be evaluated for any possible hits.

VS can be mainly split into three major categories as was described in Section 1.1.
Structure Based Virtual Screening (SBVS) is the most popular method to estimate the
binding affinity (Ashtawy and Mahapatra, 2012). SBVS uses structural information
from both the protein’s and ligand’s 3D structure to deduce their physicochemical in-
teractions. These interactions are approximated by evaluating a scoring function that
considers the molecular interactions at the binding site. Ashtawy and Mahapatra (2012)
comment that SBVS methods have seen an increase in interest due to the rise of available
3D structures, and because they provide a more accurate approach than ligand-based
methods.

Molecular docking is an SBVS approach, where the docking algorithm generates sev-
eral binding poses of the molecule under test around the area of the protein binding site.
The binding pose represents a candidate orientation of the ligand relative to the target.
The ligand orientation with reference to the protein structure is referred to as binding
mode.

SBVS theoretical background stems from Fischer’s analogy of the lock and key hy-
pothesis developed in the 19th century. Fischer (1894) theory was that a molecule will
bind to a protein if its shape matches the space available at the protein binding site,
similar to a key matching a lock, as is illustrated in Chapter 1, Figure 1.1. The docking
algorithm thus searches for a suitable binding pose in an exhaustive manner all the pos-
sible molecule binding modes in a typical ’lock and key’ fashion, in search for the perfect
fit. The scoring function of the docking program is used to find a suitable ligand pose
yielding the best binding affinity. Molecular docking is also termed docking-based vir-
tual screening (DBVS) and is arguably the most applied method in SBVS (Cheng et al.,
2012).

The docking algorithm needs to tackle a number of challenges for successful simu-
lation of ligand-target interaction such as i) the role of water molecules at the binding
site, ii) protein and ligand flexibility (ability to change molecules’ orientation at rota-
tional bonds), iii) metal ions, and iv) the effectiveness of the scoring function used to

20

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

assess the fitness of the docked pose. Therefore, the scoring function is a key element in
molecular docking and crucial to the docking algorithm as its reliability depends on the
accuracy of the scoring function used.

2.1.1 | Scoring Functions
The limitation of docking models have been attributed to the poor performance of scor-
ing functions. Improving this performance is not a trivial task and several developments
have been done in the last 30 years, however results are still unsatisfactory (Ain et al.,
2015). Zheng et al. (2019) further comment that inaccuracies in the binding affinity pre-
diction leads to high false positive rates during pose prediction, and emphasize the ur-
gent requirement to develop accurate scoring functions. Ragoza et al. (2017) describes
the SF as the foundation in structure-based drug design, and Li et al. (2019) attribute
four major functions of the SF in VS. These four functions are:

1. Pose prediction: Determine the binding mode of the ligand to the target protein.
Each ligand pose is evaluated at the binding site, and the pose with the best bind-
ing affinity is selected. Therefore the scoring function is as described by Cheng
et al. (2012) the "heart of molecular docking".

2. Prediction: Predict the absolute binding affinity between protein-ligand complex
in lead optimisation.

3. Ranking: Ranking of molecules of known pose in order of the binding strength
for a given protein target.

4. Classification: Identification of potential drug leads for a given target protein by
evaluating a large molecular database to find if the molecules is active or inactive.

Section 2.4 provides an overview of the history of scoring functions starting with the
classical methods and provides a comprehensive review on the development and the
state of the art techniques on ML-based SF. The next section details the foundation back-
ground work in artificial neural networks and the convolution neural network as the
basis for building our scoring function.

2.2 | Artificial Neural Networks
Artificial neural network are inspired by the function of the human brain and were
loosely modeled to simulate the biological neuron (Rosenblatt, 1957). Figure 2.1 com-

21

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

pares the representation of the biological and artificial neurons. Neurons are funda-
mental units in the brain that use dendrites to receive and collect input signals in the
cell body from other neurons. The cell body processes them, and depending on the in-
put received it sends the signal out to neighbouring neurons, which in turn generates
an input signal to these neighbouring neurons. This basic representation was used as a
a source of inspiration, however ANNs do not attempt to mimic the brain’s biological
complexities (Goodfellow et al., 2016).

Figure 2.1: The structure of the artificial neuron is analogous to the biological Neuron.

Using the analogy of Figure 2.1 the artificial neuron receives input also from other
neighbouring units, weighs their inputs simulating the connection of a synapse, and
sum them up. Similar to the cell body function, an activation function determines the
output of the weighted sum of inputs to decide if it should be fired (activated) or not,
and propagates the signal to the other neurons. The perceptron was the first ANN de-
veloped by Rosenblatt (1957) that could learn from examples and solve a limited class
of linearly separable problems. The range of solvable problems of the perceptron is lim-
ited as it is a binary classifier that uses a step function, known as Heaviside. Due to this
major limitation of the perceptron, there was little motivation for further development.
Later on, arrays of perceptron arranged in layers interconnected to each other showed

22

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

that they could solve more complex functions. This arrangement was defined as a multi-
layer perceptron or a feed-forward (FF) neural network. A FF NN is composed of multiple
layers that include an input layer, hidden layer, and output layer as shown in Figure 2.2.
Each node within each layer is interconnected to all the other nodes in the previous, and
next layers to form a network of layers. It is termed feedforward as the output of each
layer is only connected to the next layer, and never to a previous layer using a feedback
connection. Including a feedback connection would result in a Recurrent NN (RNN).

Figure 2.2: Feed Forward Neural Network showing input and output layers, and one
hidden layer. wi represents the weight for a particular for si neuron. Bias terms bi are
applied at each hidden and output layers.

A feed-forward neural network can be seen as the classic deep learning models when
they have more than one hidden layer (Goodfellow et al., 2016). Deep learning concepts
are explained in more detail in the next section. The aim of the feedforward network is
to map some underlying function that approximates the required output for the given
input. This mapping is achieved through learning. The FF NN is a supervised learning
method that is capable of solving both classifications and regression tasks. In supervised
learning, the training data consists of N samples and each sample is composed of a
number of features x1, x2..xn that represent a predetermined output y. For classification
tasks, y can be part of finite number of classes y ∈ {C1, C2, ..Ck} with k classes. In the
regression type y, represents a continuous value without any class label.

23

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

Each hidden layer requires the use of an activation function to compute its output.
The rectified linear unit (ReLU) activation function, described in more detail in Sec-
tion 2.2.2.1, is the default function to use as recommended by Goodfellow et al. (2016)
in most FF NN. The ReLU function can be defined as z(x) = max{0, x}, where the out-
put is linear for only positive values of x. This represents a non-linear function and
therefore yields also a non-linear output for any linear input. Other activation functions
include the sigmoid and the hyperbolic tangent (tanh) function. The non-linearity on the
activation functions defined in the hidden layers allow the FF NN to learn non-linear
functions. The FF NN with hidden layers was used to build the universal function ap-
proximation theorem (Hornik et al., 1990). Hornik et al. (1990) state that a FF NN with a
linear output with at least one hidden enabled with ReLU activation (non-bounded such
as sigmoid) can approximate any function given it has sufficient hidden units which can
be determined empirically.

The strategy for FF NNs is to learn the underlying function through optimisation
where the loss function of the NN is minimised. The loss function represents the dif-
ference between the real output versus the predicted output of the network, and is also
referred to as criterion. The loss function is used to measure the performance of the
supervised ML model by measuring the distance between the predicted output, ŷ and
the actual output y of training data, parameterised by the parameters θ of the model.
Learning is achieved by modifying the parameters of the model so that ŷ is close to y as
much as possible. Equation 2.1 shows the common Mean Square Error loss function:

LMSE(θ) =
1
n

n

∑
i=1

(ŷi − yi)
2 =

1
n

n

∑
i=1

(h(θi))− yi)
2 (2.1)

where θ are the model parameters, n is the number of samples, and h(θ) is the pre-
dicted output in terms of the model parameters, also known as the Hypothesis Function.
Loss functions are minimised by finding the minimum in its derivative. For example
consider the loss function y = f (x), where both x and y are real numbers. The deriva-
tive of the loss function is f ′(x) = dy

dx . If we consider a small change in the input ε, then
the corresponding output can be represented as:

f (x + ε) ≈ f (x) + ε f ′(x) (2.2)

Therefore for our minimisation objective we can use the derivative of the loss function
to indicate the change in x to make an improvement in y. Since we need to minimize
the function the negative gradient is used to specify the direction of x to make the im-

24

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

provement in y. Therefore:

f (x− ε(f ′(x))) < f (x) for small ε (2.3)

This technique is called gradient descent and makes small changes to the opposite sign
of the derivative to optimize the output (minimize). Learning of FF NN requires com-
puting gradients of complicated functions using the back-propagation algorithm (Rumel-
hart et al., 1986).

The back-propagation is used in FF NN and several other deep learning models for
training and is used to efficiently compute the complex gradients of these models. Back-
propagation refers to the method used to compute the gradients, however other algo-
rithm are used for the actual training such as stochastic gradient descent described later
on in Section 2.2.4. The learning process utilising the back-propagation can be split into
two parts with the objective of making model updates on weight terms, W and bias
terms b, so that the required output can be mapped for a given input. The bias terms
represent a value that is added to each neuron for each layer, and provide a way to
shift the activation functions to the left or right to make adjustments to fit the expected
output.

� Forward Propagation. In the forward pass we predict the output value with the
current parameter values. Considering the NN shown in Figure 2.2, the forward
propagation steps include:

◦ Initialize weights Wl and bias values bl for each of the total l layers.

◦ Get values for training input x, and target output y.

◦ Starting at the input layer and moving forward to the output layer, one layer
at a time, find the output from each layer k using:

a(k) = b(k) + W (k)h(k−1) (2.4)

h(k) = z(a(k)) (2.5)

where h(k) is a vector output at layer k, z(a(k)) is the activation function at
layer k, and ŷ = hl is the output of the last layer.

◦ Find the loss in the network, J using the loss function in Equation 2.1.

J = L(ŷ, y) (2.6)

25

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

� Backward Propagation. As detailed in the above Forward propagation steps to
compute the output error, the particular weight values are transformed using dif-
ferent functions as it flows forward through the network. Partial derivatives using
the chain rule for each function are used to find the change in loss at the output
with respect to the particular weight and bias values. To illustrate this, let us con-
sider the weight update of ws1,1 of Figure 2.2. To find out how much change in
ws1,1 affect the total error, the partial derivative of the loss J with respect to ws1,1

can be represented as:

∂J
∂ws1,1

=
∂J
∂h3

1
.

∂h3
1

∂a3
1

.
∂a3

1
∂ws1,1

(2.7)

where, ∂J
∂h3

1
is the partial derivatives of the loss with respect to the output neuron o3

1

(Figure 2.2). ∂h3
1

∂a3
1

is the partial derivative for the activation function, and ∂a3
1

∂ws1,1
is the

partial derivative of the summation terms (Equation 2.4) with respect to weight
ws1,1. Additionally, since each layer has a vector of weights, let us represent the
partial derivatives in vector notation as shown in Equation 2.8.

∂J
∂Wi

= ∇Wi . J = ∇Wi . L(ŷ− y) (2.8)

Therefore, using the above example, the model parameters can be updated using:

◦ Compute the partial derivatives of the cost function with respect to the out-
put, and store in g

g ←− ∇ŷ . J = ∇ŷ . L(ŷ− y)

◦ For each layer l, compute gradients of the output with respect to the activa-
tion function, starting from the output layer going backwards to the input,
and update g, using element-wise multiplication of g and (z′(a(k)).

g ←− ∇a(k) . J = g � z′(a(k))

◦ Compute partial derivatives for bias and weight terms.

∇b(k) . J = g

∇W (k) . J = g . h(k−1)>

26

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

since bias is constant, and the weights are multiplied by the outputs of the
previous layer with linear sum terms.

◦ Propagate the gradients with respect to the next layer (previous hidden layer).

g ←− ∇h(k−1) . J = g . W (k)> (2.9)

◦ Repeat for the number of layers.

◦ Update all parameters using learning rate ε at each layer, similar to the gra-
dient descent update shown in Equation 2.3.

The next section discusses Deep Learning in more detail and described the convolu-
tion neural network as a specialised form of deep learning network.

2.2.1 | Deep Learning
Machine Learning (ML) algorithm success is highly dependent on having the correct
set of features that represent the problem being tackled. In representation learning, ML
algorithms use the raw input to automatically discover a representation to output, and
also the representation (or features) of the input itself. Deep Learning (DL) has the abil-
ity to enhance this representation learning so that it is able to extract complex features
from raw data, that would otherwise be difficult to extract (Goodfellow et al., 2016).
Without a good representation for complex features, learning would not be possible —
a capability that is lacking in conventional ML algorithms. LeCun et al. (2015) comments
that traditional ML techniques are limited to process raw data and that careful feature
engineering and expert knowledge in the particular domain are still required for feature
extraction. The principal aim of deep learning as described by Glorot and Bengio (2010)
is:

"Deep learning methods aim at learning feature hierarchies with features
from higher levels of the hierarchy formed by the composition of lower level
features".

This simply implies that the DL learning models seem to abstract the input represen-
tation into simple concepts, and then extract a complex representation by building a
hierarchy from these simpler concepts. If we consider an image as an example, it is dif-
ficult to create a representation from the raw pixels. However, in a deep learning model
each hidden layer within the network extracts different types of simpler concepts such
as edges, corners and contours, or small objects. When these simpler concepts, across

27

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

all layers, are nested together as a hierarchy they can form the complex representation
that describe the object in the image. The key aspect in this representation is that no
human input is provided for any feature engineering. The deep network is able to au-
tomatically extract multiple levels of representation and learn very complex functions.
(LeCun et al., 2015).

This has empowered different researcher to use DL to discover features in high di-
mensional data in various domains including techniques at predicting activity of poten-
tial drug molecules (Ma et al., 2015). Goodfellow et al. (2016) describe model depth by
measurement of the number of sequential instructions executed to produce the output
(number of hidden layers), or else by the depth of the graph of how simple concepts re-
late to each other, however there are no defined rules for this measurement. In the next
section we will describe in the convolution neural network DL model.

2.2.2 | CNN
The Convolution Neural Network (LeCun et al., 1989) is a specialised type of neural
network that typically processes data with a grid-like input type. As the name of this
technique implies, the convolution operation is used in this type of network. The convo-
lution is a mathematical operation on two functions to obtain a new function that reflects
how one of the input function is modified by the other input function. The convolution
s(t) for input functions f (t) and g(t) can be represented as shown in Equation 2.10.

s(t) = (f ∗ g)(t) =
∫ ∞

a=−∞
f (a)g(t− a)da (2.10)

Goodfellow et al. (2016) define CNN as:

"Convolution networks are simply neural networks that use convolution in
place of general matrix multiplication in at least one of their layers."

Equation 2.10 represents data in continuous space. The discrete function of Equa-
tion 2.10 applied to discretised time can be represented as:

s(t) = (f ∗ g)(t) =
∞

∑
a=−∞

f (a)g(t− a) (2.11)

In a CNN terminology the f (t) terms represent the input which is usually a multidi-
mensional array of data, commonly referred to as a tensor. The g(t) term is the kernel
used to transform the input data and is a tensor of parameters that are updated during
training. The output s(t) can be referred to as the feature map. In multi-dimensional

28

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

data applications, the kernel has the same depth, or channels as the input image. The
convolution operation when applied to a 2D tensor for an image I with a 2D kernel K is
changed to:

s(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n) (2.12)

Since the convolution operation is commutitative it can be re-written as shown in
Equation 2.13 and requires flipping the kernel tensor in both dimensions (bottom to
top, and right to left).

s(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n) (2.13)

In Equation 2.13 i and j represent the dimension size of I, whilst m and n represent
the dimension size of K. The summation terms are restricted to m and n, to represent
the size of the kernel, and the other locations in space are assumed to be 0 so that the
limits −∞ to ∞ of Equation 2.11 can be dropped.

As described by Goodfellow et al. (2016) the commutative property in convolution is
not important for neural networks and it is common for machine learning libraries to
leave it out of the convolution operation. When the kernel is not flipped, in reality the
cross-correlation operation is performed. Machine libraries such as PyTorch1 implement
cross-correlation and often use the two terms interchangably. In this study we also use
the same convention. The kernel values are parameters learned within the network and
in general will not make a difference if a flipped version is learned. When the kernel is
not flipped the Equation 2.13 changes to:

s(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n) (2.14)

The convolution operation (without flipping) is shown in Figure 2.3. A window the
size of the kernel of the input (examples marked in shades of red) is convolved with
the filter to produce a single value. The output dimensions shown in Figure 2.3 can be
calculated using Equation 2.15.

n[l] =
n[l−1] + 2p[l−1] − f [l]

s[l]
+ 1 (2.15)

where, n[l] is the output at layer l, nl−1 represents the input size of a particular di-
mension, and p[l−1] is the padding applied to this input that are coming from a previous

1https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html (last accessed
20-06-2020)

29

https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

Figure 2.3: 2D Convolution without kernel flipping. The kernel is here of size 2× 2 and
slided across the input with a stride of 1. In this example the input is not padded and
since the kernel needs to lie entirely within the image, the resultant output is of 3× 2.
Adapted from Goodfellow et al. (2016).

layer, f is the kernel size for the corresponding dimension, and s is the stride used for
the convolution. Padding enlarges the input size by adding zeros across all dimensions.
This can be used to keep the output of the same size. Padding is also used to retain
more information at the border of the input. The stride is the number of steps the kernel
windows moves to calculate the next output value.

For input with more than 2 dimensions such as a 3D images, the kernel is required
to be of the same dimension, however the output will be always 2D, irrespective of
the number of channels with the input. In CNN networks multiple filters are used to
increase the channel depth of the convolution output. Figure 2.4 shows an example
where the input is convolved with 64 filters each of size 5 × 5 × 3. Convolution of
the 64 filters with the 3D input of 32× 32× 3 would correspond to an output size of
28× 28× 64 using Equation 2.15 assuming a stride of 1 and no padding. The output
from all the filters are collected into one multi-dimension tensor to be used as input for
the next layer.

2.2.2.1 | Anatomy of the CNN

Figure 2.5 illustrates a typical CNN network made up of following components, which
will be discussed further in this section.

� The first part of the network is made up of a series of convolution and pooling
layers.

30

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

Figure 2.4: Convolution with multiple filters. A 3D input is convolved with an array of
64 filters. Each filter needs to have the same number of channels as the input. In this
example the input has 3 channels, so the size of the filter with a kernel of 5 is 5× 5× 3.
Each filter produces a 2D image, which are grouped in a single array to produce the
output of the layer.

� The second part of the network consists of fully connected (FC) components using
a number of hidden layers.

� At the output, there is additional softmax layer for classification problems, or a
single output neuron for regression type of problems.

31

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

Figure 2.5: CNN Architecture used for LigityScore3D (described in Section 3.7) showing
input layer, convolution and pooling layers, fully connected section and a single output
neuron for a regression output.

Figure 2.6: A Convolution Layer. Apart from the convolution operation with a num-
ber of filters, a convolution layer includes also a non-linear activation function, such as
RELU, and a bias component. The normalisation (Section 2.2.6) and dropout compo-
nents are optional components.

32

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

The Convolution Layer
The convolution layer is composed of several components as illustrated in Figure 2.6,

and represents a zoomed in view for one of the convolution layers (blue block) in Fig-
ure 2.5. The first stage includes a series of parallel convolution operations to compute a
set of linear activations. The second stage is normally a non-linear activation function
such as the Rectified Linear units (ReLU) function. In our example we have included
also the normalisation and dropout components. These are optional components that
are not part of the basic convolution layer but are included here as they are mentioned
in subsequent sections and were used as additional building block in this study. Al-
though the normalisation can be placed after activation (Mishkin et al., 2017), it used
before activation by Ioffe and Szegedy (2015) when used with the ReLU function.

The RELU non-linear activation function is visualised in Figure 2.7 and the function is
represented by Equation 2.16. RELU returns 0 for any negative value, whilst it returns
the input itself for any positive input.

f (x) =

{
0 for x < 0

x for x ≥ 0
(2.16)

d
d(x)

f (x) =

{
0 for x < 0

1 for x ≥ 0
(2.17)

Figure 2.7: The RELU function. The RELU function is non-linear activation function
commonly used in deep networks that although its simplicity is was used successfully
in various deep learning methods to achieve state of the art results in various years (He
et al. (2015); Krizhevsky et al. (2012)).

33

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

The RELU activation function (or detector) is a commonly used in NN due to its sim-
plicity, performance, and its suitability in deep networks, and was also used for the
LigityScore implementation. Krizhevsky et al. (2012) introduced a breakthrough CNN
architecture termed AlexNet, which pioneered the adoption of ReLU in deep networks
together with dropout layers, and achieved state of the art results for the 2012 ImageNet
(Deng et al., 2009) classification challenge. Krizhevsky et al. (2012) reject the use of the
standard way to model the neuron output that use the sigmoid or hyperbolic tangent (tanh)
activation functions. The authors describe how ReLU enabled their network to train
several times faster than the tanh activation counterpart, and allowed the authors to
successfully train their deep network on the massive ImageNet dataset which wasn’t
feasible with saturating neuron models (sigmoid, and tanh).

He et al. (2015) used the ReLU activation to again achieve state of the art results in
2015 on the ImageNet classifications using very deep CNN where their result for first
time achieved better than human classification performance. He et al. (2015) continued
on the work of Krizhevsky et al. (2012), and to achieve these results they proposed an
extension of ReLU termed Parametric Rectified Linear Unit (PReLU). For the positive part,
the PReLU is the same as ReLU. For the negative part He et al. (2015) introduce the ai

term that is an activation learnable parameter. The subscript i is used to refer to the
ith channels as PReLU allows different values to be learned across different channels.
He et al. (2015) also devise a sound initialisation method for the CNN weights that is
based on ReLU activations, that helps very deep networks to converge. Their method is
termed the Kaiming Initilisation and is discussed in Section 2.2.5.

Pooling
A pooling layer is used after each convolution layer to reduce the dimensionality of its

output feature maps by using a summary statistic to summarise the presence of features.
The summary statistic for the pooling operation is a commutative function such as sum,
average, and max.

The feature map output of the convolution layers encodes also the location of the par-
ticular features. Any translation of these features at the input, would create another
different feature map. In order to avoid different representations, nearby features of the
convolution layer output are grouped together and summarised in patches to be down-
sampled as to create a convolution representation that is invariant to small translations
of the input. Therefore the pooled output remains the same even when there are small
fluctuations at the input (Goodfellow et al., 2016). This type of invariance is termed local
translation invariance. Local translation invariance is a useful property to have when we
are interested in the presence of the feature rather than its exact location.

The pooling is applied to each feature map seperately so that all channels are pooled

34

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

in the same way. A pooling with a kernel size of 2 and a stride of 2, would apply the
summary statistic at a 2× 2 window, that would half the dimensions of the feature maps.
Two of the most common summary statistic include:

� Max Pooling. Max pooling summaries the feature maps by choosing the maxi-
mum value in the pooling window. Therefore, only the features with the most
activated presence are selected, which tends to provide the most salient informa-
tion from features.

� Averaging. Average pooling calculates the average values of the considered in the
pooling window to smooth out the features in the pooling window.

Fully connected layers
The output of the last convolution layer is flattened to one dimension so that it is used

as input to a fully connected (FC) network. The CNN layers analyse the input and break
it down into a map of features. In turn, the fully connected layers, which are deep FF
NN as introduced earlier in Section 2.2, are used to map these extracted features to the
expected output. The convolution layers on their own are not capable of concluding the
output result and therefore the FC layers are crucial for the operation of the CNN.

On the other hand, a fully connected layer on its own can be inefficient especially for
large multi-dimension tensors. Moreover the FC layers lack the feature extraction ca-
pabilities of the CNN layer which are essential to the overall learning process. These
capabilities are discussed in Section 2.2.2.2. Therefore the two parts together, enable the
CNN to be one of the most successful NN architectures (Goodfellow et al., 2016).

Output Layer
The output layer of the CNN is the last layer of the FC network and similar to the FF

NN, it is expected to provide the final transformation to predict the output. The output
layer can have different activation functions, such as the linear or sigmoid functions
and the choice depends on the required output distribution. In classification tasks the
probability distribution is discrete and contains n possible values. The softmax function
can be used in these classification scenarios to represent the probability distribution over
the n classes, and draw out the probability for each respective class. In classification
tasks the output layer contains as many neurons as the number of classes in the dataset.
The softmax function is shown in Equation 2.18.

so f tmax(z)i =
exp(zi)

∑j exp(zj)
, where z = W>h + b (2.18)

35

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

where z is the summation terms at the output neuron. Softmax exponentiates z for
better gradient-based optimisation, and normalises over all other outputs in order to
have a valid probability output between 0 and 1 for each output neuron, with a total
sum probability equal to 1. Softmax generalises the sigmoid function to extend the
binary value probability distribution to multiple classes.

Regression type of problems have a single output neuron that does not make use
of squashing activating functions such as sigmoid or tanh, as these would restrict the
output values to their limits. Therefore for regression output linear outputs can be used,
or else ReLU for positive only values.

The work of Krizhevsky et al. (2012) and his success in the ImageNet challenge on
object recognition has sparked and motivated researchers to use CNNs in various do-
mains also outside of the computer vision domain. Although the basic building blocks
remain the same, various successful architectures were developed in recent years. These
prominent architectures include LeNet LeCun et al. (1998), the VGG (Simonyan and Zis-
serman, 2014), and the ResNet (He et al., 2016). The CNN methods used for building
scoring functions is discussed in detail in Section 2.4.4.

2.2.2.2 | CNN as a better ML model

The CNN network leverages a number of concepts that help to improve a ML model
which stand out from traditional fully connected network. These areas can be used as
motivation to train better networks using convolution layers. These include:

� Sparse Interactions. In traditional NN every output neuron is connected to all
inputs. Convolution networks as shown in Figure 2.4 have the windowing filter
that is smaller by a number of orders of magnitude. This implies that only the neu-
rons within reach of the windowing filter are connected. This leads to sparse con-
nectivity within convolution networks. The CNN network can thus detect small,
meaningful features within the filter window such as edges using fewer connec-
tions and learning parameters, which reduce the memory requirements and also
improves statistical efficiency. This results in significant efficiency improvement
(Goodfellow et al., 2016). Therefore the sparse connections are able to detect im-
portant features with less network complexity. A neuron in a deeper layer of the
network has still an indirect interaction with a larger portion of the input as sparse
connection form a sort of hierarchical tree, where the deep neuron is connected to
a number of adjacent neurons, however these neurons are in turn connected to a
number of other neurons from the previous layer as illustrated in Figure 2.8. This

36

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

concept allows separate feature maps to interact together when constructed as a
deep model.

� Parameter Sharing. The kernel filters in a CNN are all learnable parameters. In
convolution the filter is shifted across all the inputs such that all its parameters
are shared across all the input elements. This contrasts with traditional NN, where
specific weights (parameters) are tied to individual neurons. These tied parameters
are only used once when computing the output. Therefore in CNN, a set of shared
parameters are learned for the whole input, rather than having different distinct
parameter sets for every location. The shared aspect implies that less parameters
are used in training that also result in significant memory efficiency enhancement.

� Equivariance. Convolution function is equivariant, meaning that if the input
changes, the output changes in the same way and can be expressed as f (g(x)) =
g(f (x)). This property is important for feature extraction. This is the result of the
parameter sharing principle described in the previous section. In time series data,
the same event but at a different time would still have the same representation.
Similarly, in 2D data, spatial feature maps are created that localise particular fea-
tures of the input. If these features are moved, the spatial feature maps move by
the same amount. This would basically imply that the feature extraction process is
independent of the spatial position of the features. However this also means that
this property is useful to identity the presence of the feature but not their position.
It is important to note that scaling and rotation transformation are not equivariant.

2.2.3 | Dropout
Dropout regularisation technique that is targeted for neural network (NN) models and
was proposed by Srivastava (2013). The dropout techniques adds bias or noise to the
NN model in order to prevent overfitting. In order to add this bias, the dropout tech-
nique removes nodes together with their input and output connections randomly dur-
ing training. The random dropout action is performed during the training phase only,
and it creates a different thinned NN for each epoch as there are less neuron activa-
tions. Minimisation, through back propagation, of the loss function is only applied to
the thinned network, as the inactive neurons do not participate in the training of that
epoch which may lead to slower training. The intensity of the dropout is regulated by
hyperparameter p, describing the probability of retaining a unit, where p = 1 implies
no dropout. Dropout can be applied both for the input layer, and also on each of the

37

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

Figure 2.8: Neuron direct and indirect Connections. The diagram represents 3 convo-
lution layers as seen from a plan (top) view. Each neuron has sparse connections to the
other neurons as represented by neuron h2 highlighted in orange. h2 has only direct con-
nections with g1, g2, and g3. However, neurons in a deep network such as g4 still have
an indirect connection to most or all of the neurons of the input through the previous
layers. The highlighted neuron in blue shows the sparse connection in a hierarchical tree
creating indirect connections from across a number a layers. Adapted from Goodfellow
et al. (2016).

hidden layers. Srivastava (2013) have determined that the typical values of p for hid-
den layers is between 0.5− 0.8, whilst for real valued inputs a probability of 0.8 is used.
Choosing an incorrect value of p can induce too much bias and may lead to underfit-
ting. In our LigityScore models we use 0.5 dropout probability for all FC layers. Higher
probabilities were also used in some experiments but did not show any generalistion
improvement and had the negative effect of slowing the convergence time.

During each training epoch a masking vector is created using the probability p ap-
plied on a Bernoulli Distribution, where its output is either ’1’ or ’0’ to determine which
neurons are activated. Therefore, considering a layer of n neurons, n (1− p) neurons
would be masked at each epoch. At the end of the training each node would have been
trained a different number of times, however each epoch still contributes to the same
sets of weights. On the other hand, during the testing phases dropout is not switched
off and all the neurons are used. Srivastava (2013) has determined that dropout was
successful in various domains including speech recognition and document classifica-
tion to mention a few. The author has concluded that the dropout method is a general
technique that can be applied across different domains, however it has the drawback of
extending the training time by typically two to three times.

38

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

2.2.3.1 | Convolutional Dropout (Spatial Dropout)

Spatial Dropout is used to drop the activations of the entire feature map on a particular
channel to improve the generalization performance of a CNN network. Spatial dropout
was formulated by Tompson et al. (2015) to reduce overfitting by preventing particular
activations in their network from becoming strongly correlated. This contrasts with the
dropout method discussed in the previous section where the activations are dropped
randomly. Tompson et al. (2015) claim that standard dropout at the convolution layers
increases the training time but fails to prevent overfitting.

The feature map is constructed using sparse interactions as described in Section 2.2.2.1.
Since the output depends on multiple neurons, simply removing one of the neurons us-
ing standard dropout, will still receive a strong activation since most probably neigh-
bouring neurons would also contribute to strong activation. Dropout in this scenario is
only effective to decrease the learning rate of the model. Therefore spatial dropout drops
out all the feature map at a particular channel to reduce activation strength. Tompson
et al. (2015) show that they outperformed the previous state-of-the-art results on human-
body part localisation CNN with the addition of spatial dropout. Spatial dropout with a
small dropout probability (0.1 or 0.2) was applied to the LigityScore convolution layers
and showed improved results and more resilience to overfitting.

2.2.4 | Stochastic Gradient Descent
Machine Learning algorithms utilize optimisation algorithms for learning, based on the
gradient descent and back propogation algorithms introduced earlier, where the pa-
rameters updated at each iteration do not consider all the training examples. Instead,
a sample of the training set is used to find an estimate of the error at each iteration to
update the parameters. Such optimisation algorithms are commonly called minibatch
stochastic or simply stochastic.

Stochastic gradient descent (SGD) is one of these stochastic optimisers and it was
proved to be an effective way to train deep networks (Ioffe and Szegedy, 2015). CNN
networks are also typically trained in mini-batches. The CNN is only updated once after
the loss for the mini-batch samples are accumulated. This reduces the training time as
the network is only updated once per mini-batch. Additionally since each mini-batch
is of fixed size, its computation time remains the same allowing steady gradient up-
dates for large datasets. The number of samples to includes in each mini-batch varies
per model and can be as low as 5 or large as 256 (Ioffe and Szegedy, 2015). The basic
algorithm for SGD is as follows:

39

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

1. Initialise learning rate εk, and parameters θ. The value of εk is decreased gradually
over time, and therefore εk denotes the learning rate at iteration k.

2. Randomly sample a mini-batch of m samples {x(1), x(2), ..., x(m)} from the training
set with their output y(i).

3. Compute gradient estimate, ĝ using back propagation for each sample, and find
their average. Adding the average term and generalising Equation 2.8, the gradi-
ent estimate can be represented as:

ĝ ←− 1
m
∇θ

m

∑
i

L(f (x(i); θ)− y(i)) (2.19)

The gradient estimate from the random sample creates an element of noise in the
model, since it considers only a sample of the training set, and can be seen as a
form of regularisation.

4. Apply updates to parameters:

θ ←− θ− ε ĝ (2.20)

5. Repeat until stopping criterion for error is reached.

Momentum is a technique added to the SGD algorithm to cater for its slow learn-
ing speed. Momentum introduces another hyperparameter α ∈ [0, 1) that controls the
momentum variable v, termed velocity which represents an exponentially decaying av-
erage of the negative gradient. The exponential effect results from accumulated term
of v over the iterations. Velocity v is controlled by α so that the gradient estimate of
Equation 2.20 changes to αv − εg. The parameters are then updated by this velocity
component. Therefore Equation 2.21 is applied before Step 4 from the SGD algorithm
above.

v ←− αv− ε ĝ (2.21)

The larger the value of α, the bigger the impact of the previous gradient on the current
gradient.

40

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

2.2.4.1 | Adam Optimisation

Goodfellow et al. (2016) describe the difficulty in selecting a good ε. A number of al-
gorithms using adaptive learning rates have been developed to alleviate this difficulty.
Adaptive optimizers utilise separate learning rates for different parameter which are
also updated automatically during learning. The Adam is a popular adaptive optimizer
developed by Kingma and Ba (2014) that was inspired by other popular adaptive opti-
mizers namely AdaGrad (Duchi et al., 2011) and RMSProp (Tieleman and Hinton, 2012).
Adam uses techniques from RMSProp and SGD with momentum. Adam uses squared
gradient to change the learning rate like RMSProp as in Equation 2.23, and uses the mov-
ing average update shown in Equation 2.21 instead of the gradient itself (Equation 2.20)
like momentum SGD.

Adam uses estimates of 1st and 2nd order moments of the gradient taken from the
mini-batch to apply adaptive learning rates. The nth moments of the gradient of the
cost function, which is a random variable, is the expected values to the power of n. The
term Adam stems from the adaptive moment estimation. Adam introduces a number of
parameters. These include β1 and β2 used as decay rate for moment estimates, and δ

that is used for numerical stability. The Adam algorithm is summarised by the following
sequence:

1. Initialze parameters, β1, β2, εk, and δ. The suggested parameters intial values
defined by Kingma and Ba (2014) are 0.9, 0.999, 0.001, and 10−8 respectively. Apart
from ε, the others are rarely changed.

2. Initialise time step t = 0.

3. Initilise model parameters θ, and s, r which are 1st and 2nd moment variable re-
spectively.

4. Sample mini-batch and compute gradient, g as in Steps 2 and 3 of the above men-
tioned SGD algorithm.

5. Increment t (t← t + 1).

6. Update 1st and 2nd moment variables:

s ←− β1st−1 + (1− β1) g (2.22)

r ←− β2rt−1 + (1− β2) g � g (2.23)

41

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

These represent exponentially moving averages since as the moments are accu-
mulated the β terms increase in power. The first moment can be seen as the mean
of the gradient and a momentum term, whilst the 2nd moment represents the un-
centered variance (mean not subtracted).

7. Correct bias for the 1st and 2nd order moment variables so that these estimations
are or expected value.

ŝ =
s

1− βt
1

(2.24)

r̂ =
r

1− βt
2

(2.25)

8. Find change in update for parameters and apply updates:

∆θ = −ε
ŝ√

r̂ + δ
; θ← θ+ ∆θ (2.26)

9. Repeat Steps 4-9 until the required stopping criterion is reached

Kingma and Ba (2014) conclude that Adam is a simple and computationally efficient
stochastic optimisation technique which combines advantages from AdaGrad and RM-
SProp, and is aimed to for use in deep learning methods to enhance the model’s con-
vergence. LigityScore uses the Adam optimiser techniques using default values for all
parameters except for the learning rate, where smaller values were used (1× 10−5).

2.2.5 | Weight Initialisation
Weight initialisation is an important element to consider when training ANNs. Incor-
rectly initialised weights can lead to poor performance or cause the network not to con-
verge. Weight initialisation that is too large can lead to exploding gradient issue, whilst
initialisation that are too small can lead to vanishing gradient issue. Exploding gradi-
ents occurs when large weights in the network are multiplied across several layers that
cause a large change in the error output, which in turn also causes large gradients. The
opposite occurs for small weights. Weight initialisation methods such as zero intialisa-
tion or random initialisation are rather naive and are not suitable for deep networks. In
this section we will discuss the Xavier (Glorot and Bengio, 2010) and the Kaiming (He
et al., 2015) methods.

42

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

The Xavier initialisation method was developed by Glorot and Bengio (2010). The au-
thors investigate how different activation functions and weight initialisation technique
effect model performance, and come up with two rules for weight initialisation to avoid
vanishing or exploding gradients.

� Keep the mean of the activations to zero.

� The variances of activation across all the layers should be the same.

To abide but the above two rules, Glorot and Bengio (2010) proved that the weight
initialization when using tanh activation can be initialised using Equation 2.27:

XavierInit :

 W [l] = N (µ = 0, σ2 = 1
n[l−1])

b[l] = 0
(2.27)

where W [l] are the weights at layer l, and N represents the Normal Distribution with
mean µ = 0, and variance σ2 = 1

n[l−1] and n[l−1] is the number of neurons in the previous
network layers. The Xavier method initiliases the bias with zeros.

Although the Xavier method applies for tanh function, Equation 2.27 were derived
using the assumption that activation are linear (which is valid for values close to 0).
Therefore the Xavier method is only valid for the tanh function. ReLU functions cannot
assume the linearity as all negative values have 0 activation and a different technique
is required for ReLU activations. He et al. (2015) continue on the work of Glorot and
Bengio (2010) and extend their concepts to find suitable initialisation for deep networks
with ReLU activation. The Kaiming method initialises the weight like Equation 2.27 but
with the variance multiplied by two as shown in Equation 2.28.

KaimingInit :

 W [l] = N (µ = 0, σ2 = 2
n[l−1])

b[l] = 0
(2.28)

In their work He et al. (2015) claim that their initialisation method is more robust
and is suitable to training also very deep networks (example 30 layers), which cannot
be achieved using Xavier initialisation. However, for model with less layers He et al.
(2015) report no significant difference in accuracy of their tests.

2.2.6 | Batch Normalisation
Input normalisation is a standard pre-proprocessing technique that is used to speed up
learning when tackling ML problems. Normalisation deals with the process of adjusting

43

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

the features in the dataset that have different scales, to fit in common scale across all
features whilst keeping the relative differences in the ranges.

Therefore when normalisation of the input is so beneficial, why cannot we extend this
concept to the other layers? Batch Normalisation (BatchNorm) is a technique developed
by Ioffe and Szegedy (2015) that extends the concept of normalisation to all inputs of
the hidden layers in a NN. The normalisation is applied at the output of each hidden
layer after every mini-batch is processed during training. Batch normlaisation therefore
extends the basic improvement obtained by normalising the input, to multiple layers
repeated every iteration.

As the network grows deeper, the training becomes more complex. Every input at
each layer is dependent on the output of the previous layers. Any disturbance in the one
layer can be amplified as it is goes deeper in the network. Therefore the need for stability
across deep networks is even more important. Ioffe and Szegedy (2015) comment that
the training of neural networks is complicated due to the fact that the distribution of
layer inputs change every time, after each mini-batch. If we consider a particular hidden
layer, its input is coming from the previous layer. The hidden layer needs to try to learn
the inputs of the previous layer to map it to the required output. However since the
distribution of the input to the hidden layer is also changing, as it is an output of another
layer, it is more difficult to train the layer.

The model would therefore need to adapt to these changes continuously. When the
input distribution of an ML model changes it is termed as covariate shift, and the authors
extends this concept to include each layer of the network, treating each layer as though
it is a separate model. This can be seen as allowing each layer of the network to be more
"independent" than the others. They term this approach Internal Covariate Shift. Ioffe
and Szegedy (2015) have shown that in order to improve training, the internal covariate
shift needs to be reduced. In order to achieve this they stabilize the network so that
a layer’s input remains with a fixed distribution during training. Ioffe and Szegedy
(2015) apply the concept by LeCun et al. (2012) who showed that inputs with zero mean
and unit variance train faster. Therefore, BatchNorm normalises the input of the next
layer by subtracting the batch mean and dividing it by the batch standard deviation, so
that each layers has the same mean and variance. During training this normalisation
is performed at each layer using the batch mean and batch standard deviation for the
particular batch samples only. Hence the name "batch" normalisation.

The optimisation algorithm such as SGD needs to be aware that normalisation is in
place at each layer. Otherwise it can undo this normalisation during the update process,
and it may change the effect of gradient descent that can cause the network to stop
optimising the loss and lose its ability to converge. Batch normalisation is therefore

44

Chapter 2. Background & Literature Overview 2.2. Artificial Neural Networks

applied before the activation function, and the BatchNorm function is also included
in SGD. In order for normalisation not to change what the layer represents Ioffe and
Szegedy (2015) introduce two parameters for each BatchNorm layer function, γ and
β, as learnable parameters through SGD. These parameters are used to scale and shift
the normalised values so that the normalised output is multiplied by some standard
deviation γ, and added some mean β, in order to maintain an identity transform and
preserve the representation ability of the network. In summary, the benefits of batch
normalisation include:

� Improved training speed. A drastic improvement in model performance was
achieved in the experiments carried out by Ioffe and Szegedy (2015), that showed
slightly better accuracy results with 14 times fewer training steps compared to
their baseline model.

� Allows usage of higher learning rates. Since the values are normalisated, the net-
work is more stabilised and less chance of large or very small activation outputs.
Higher learning rates can lead to faster network convergence.

� Less sensitive to parameter initialization. Deep neural network can be sensitive
to the initialisation of random weight which can lead to exploding gradients prob-
lem.

� Regularization function. Ioffe and Szegedy (2015) also showed that networks
with BatchNorm required less dropout (Srivastava, 2013), or none at all in some
cases. BatchNorm uses the mean and variance computed for each mini batch
which represent only a small sample of the total training population. Ideally, the
mean and variance of the whole training population are used to remove the inter-
nal covariate shift. Therefore this lead to inaccurate values of mean and variance.
This lack of accuracy adds some noise to the model that acts a regularisation pa-
rameter.

2.2.6.1 | Instance Normalisation

Instance Normalisation (InstanceNorm) was introduced by Ulyanov et al. (2017) where
the authors further develops the concept of Ioffe and Szegedy (2015) to optimise the
speed and quality of image style transfer in computer vision. Style transfer refers to a
technique where the style of one image is imposed on another image whilst keeping its
semantic content.

45

Chapter 2. Background & Literature Overview 2.3. Evaluation Criteria

BatchNorm uses all the mini-batch samples to collectively normalize the whole batch
at each layer. However in InstanceNorm each sample, image in this scenario, is nor-
malised individually. This normalisation at the sample layer is used to normalise the
contrast in the image, effectively discarding the contrast which is not important for styli-
sation of the image (Ulyanov et al., 2017). Therefore apart from achieving the benefits
discussed in the previous section, Ulyanov et al. (2017) managed to enhance the perfor-
mance of the stylisation technique by incorporating the contrast normalisation function
in the CNN architecture itself.

InstanceNorm is used in LigityScore model and apart the benefits highlighted for
BatchNorm it also showed slightly better results and therefore was used as the main
normalisation function in our experiments. The results are detailed in Section 4.3.

2.3 | Evaluation Criteria
The evaluation of scoring functions is done using a number of metrics that are refer-
enced throughout the literature on ML based SF including Ballester and Mitchell (2010),
Stepniewska-Dziubinska et al. (2017), Jiménez et al. (2018), and Zheng et al. (2019).
These metrics include:

� Pearson’s Correlation Coefficient, R. This coefficient investigates the relationship
between two quantitative, continuous variables assuming a linear relationship,
to measure their association strength. The coefficient ranges between 0 and 1,
where ’0’ represents no correlation, whilst a ’1’ represents identical variables. In
the context of scoring functions, R is used to find the correlation between the real
binding affinity of experimentally validated protein-ligand complexes, and the
predicted binding affinity from the output of our model. The closer R is to 1, the
better the prediction ability of the model. Since the predicted affinity y should
match the real affinity x at the input, the two variables have a linear relationship.
R can be found using Equation 2.29.

R =
∑n

i (xi − x̄)(yi − ȳ)√
∑n

i (xi − x̄)2
√

∑n
i (yi − ȳ)2

(2.29)

where xi and yi are the two independent variables represented the real and pre-
dicted binding affinity respectively for n protein-ligand complexes. x̄ and ȳ are
the means of the two variables. Scatter plot are normally used to visualize the
association strength.

46

Chapter 2. Background & Literature Overview 2.3. Evaluation Criteria

� Standard Deviation. SD is defined as the standard deviation in linear regression
and is computed using Equation 2.30.

SD =

√
1

n− 1

n

∑
i
[yi − (a + bxi)] 2 (2.30)

Similar to Equation 2.29, xi and yi represent the real and predicted binding affini-
ties for the ith complex. The a and b terms represent the intercept and the slope
of the regression line when fitting x and y in y = bx + a. These terms are com-
puted using a linear regression method to find the intercept and slope of the best
straight line. The SD measure the spread of the data from the best straight line.
The smaller the SD the more correlated is the data and the better the predictions.

� Root Mean Squared Error (RMSE). The RMSE is used by the loss function to cal-
culate the prediction error and is monitored during training. The RMSE measures
the distance between the predicted output and the real values. RMSE is a nega-
tively oriented score where a lower value is better. During training a model might
overfit, and although the RMSE continues to decrease the prediction ability of the
model does not improve or gets worse. Therefore, a lower RMSE during training
is not necessarily the best performing model. The RMSE is also computed during
testing for the best performing model so that it can be used for comparison with
other experiments, and also with other research such as Stepniewska-Dziubinska
et al. (2017) and Jiménez et al. (2018). The RMSE can be defined as:

RMSE =

√
1
n

n

∑
i=1

(yi − xi)2 (2.31)

Equation 2.31 is very similar to the Euclidean distance apart from the
√

n factor
in the denominator which is used to make it a good estimator for the standard
deviation of error distribution.

� Mean Absolute Error (MAE). MAE is a measure of the error average magnitude
ignoring the direction. Similar to the RMSE, the MAE was also monitored during
training. The MAE for the test results were also computed for comparison reasons
with other tests and literature. MAE is given by:

MAE =
1
n

n

∑
i=1
|yi − xi| (2.32)

47

Chapter 2. Background & Literature Overview 2.3. Evaluation Criteria

2.3.1 | CASF Benchmark
The Comparative Assessment of Scoring Functions (CASF) benchmarks aim to provide
an objective platform to assess scoring functions strengths and weaknesses using high-
quality protein ligand complexes. The CASF benchmark was first published by Cheng
et al. (2009b) and was termed CASF-2007. A major CASF update was done in Li et al.
(2014b), and also in Su et al. (2018) which is the most recent edition. The last two up-
dates are termed CASF-2013, and CASF-2016 respectively. The CASF-2016 includes sig-
nificant improvements over the CASF-2013 including a larger, better quality test set, and
improved evaluation methods. The CASF-2013 was compiled from the PDBbind refined
set version 2013, whilst the CASF-2016 was compiled from the PDBbind refined set ver-
sion 2016. The protein-ligand complexes were selected from the refined sets through a
systematic, non-redundant sampling procedure, and are termed the Core Set 2013 and
Core Set 2016 respectively.

The CASF benchmarks were designed purposely as a benchmark for scoring functions
as a means to evaluate the performance of the SF more precisely. The objectives of the
CASF benchmarks are to:

� Build a high quality dataset suitable for evaluation.

� Select suitable performance metrics to assess the SFs.

� The authors in Su et al. (2018) claim that the performance of a scoring functions
should be measured outside the context of molecular docking tests, as this approach
is not the best evaluation method for SFs since it can be effected by other factors in-
volved in docking. Therefore the third objective was to decouple SF performance
evaluation from molecular docking tests.

The rest of the discussion will focus on the CASF-2016 version since it is the latest
update. The data set for CASF-2016 is based on high-quality crystal structures with
reliable binding data. In order to ensure the high-quality a number to rules were defined
to filter unwanted complexes. These rules are specified in the Supporting Information2

of Su et al. (2018), and as an example they include; overall resolution < 2.5 Å, and its
binding data must be in Kd or Ki.

The conformant complexes were subjected to a systematic, non-rendundant sampling
procedure and were clustered using a protein sequence similarity algorithm where each
cluster must have at least 90% similarity. Clusters with less than 5 complexes were

2https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00545/suppl_file/
ci8b00545_si_001.pdf

48

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00545/suppl_file/ci8b00545_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00545/suppl_file/ci8b00545_si_001.pdf

Chapter 2. Background & Literature Overview 2.3. Evaluation Criteria

discarded. From the remaining clusters, 5 complexes were selected to include complexes
with the lowest and highest binding affinty, and 3 additional complexes whose affinity
spreads as evenly as possible between the range of lowest and highest affinities of the
cluster (Su et al., 2018). The authors also did a visual inspection of the electron density
map for any defects using data directly from the PDB (Berman et al., 2003). Finally, all
ligand molecules for the selected complexes were examined to make sure no molecule is
identical or a stereoisomer. The selected high-quality complexes are used as the primary
test set in the CASF-2016 benchmark and include 285 complexes.

In this study the CASF benchmark was used to assess the Scoring Power of Ligi-
tyScore1D and LigityScore3D. The scoring power is quantitatively measured for evalu-
ation using the Pearson’s correlation coefficient, R, and the standard deviation (SD) in
linear regression introduced earlier in Equations 2.29 and 2.30. The Scoring Power mea-
sures the ability of the model to map a linear correlation with the predicted and known
experimental affinity values. The CASF benchmark includes also evaluation of the scor-
ing function in terms of its Ranking power, Docking power, and the Screening power.
These powers refer to the ability of a SF to:

� Ranking power. Select the correct, known binding pose of the ligand for the target
protein.

� Docking power. Identify the correct ligand from a number of generated decoys
for a given target.

� Screening power. Identify the true ligand from a pool of random molecules for a
given target.

This study is focused to optimise the binding affinity prediction. A similar approach
was taken in other literature namely Stepniewska-Dziubinska et al. (2017), Jiménez et al.
(2018), and Zheng et al. (2019). The scoring power benchmarks will be used for objective
assessment and evaluation of the proposed SF. Additionally, the model will also be com-
pared to the work done by Stepniewska-Dziubinska et al. (2017), Jiménez et al. (2018),
Zheng et al. (2019) since the benchmark tests do not include deep learning models. All
CASF benchmarks are available online3.

3http://www.pdbbind-cn.org/casf.asp/ (last accessed 12-07-2020)

49

http://www.pdbbind-cn.org/casf.asp/

Chapter 2. Background & Literature Overview 2.4. Related Work

2.4 | Related Work
Scoring functions model prediction for binding affinity have been researched and de-
veloped for the last 20 years (Ain et al., 2015). Throughout the years SF methodologies
have evolved from the classical functions, to a more machine-based approach which
was mainly pioneered by Ballester and Mitchell (2010) with the RF-score model and
was the first to achieve superior prediction results than classical SF.

In this section we will discuss the literature related to Scoring Function and how they
evolved from classical models, to ML based model, and finally to DL models.

2.4.1 | Classical Scoring Functions
According to Li et al. (2019), classical scoring functions can be classified into three main
categories: Empirical, Physics-based, and Knowledge-based. An overview of the types of
SFs is shown in Figure 2.9 where the classical SFs, in general, include summation terms
and are based on linear models. The classification of these scoring function is based on
the feature components used to derive the equations. This additive terms of the classical
SF are also highlighted in blue in Figure 2.9.

Figure 2.9: Scoring Function showing differences between classical and ML functions.
Reproduced from Ain et al. (2015).

Empirical SF. Empirical SF usually include specific terms accounting for intermolec-
ular interactions such as hydrophobic areas, and number of hydrogen bonds as shown

50

Chapter 2. Background & Literature Overview 2.4. Related Work

with X-score (Cheng et al., 2009a) example in Figure 2.9. Each term has a weight value
that can be determined by linear regression or multi-linear regression. Although these
can be deemed as ML models, they are still classical SF since they are considered simpler
linear models (Ain et al., 2015). Empirical SF are popular as they are commonly used in
docking programs such as Autodock VINA (Trott and Olson, 2010) which is one of the
most famous classical functions and also one of the highest-ranking classical models on
CASF-2016. Empirical scoring functions have a good compute performance however
the underlying simplistic functional form and reliance on linear regression prohibit the
empirical model to learn the true relationship between the protein-ligand complex and
its binding affinity (Li et al., 2019).

Physics-field SF. Li et al. (2019) has further sub-categorised the physics-based SFs
in another 3 methods — i) Force field, ii) Solvent models, and iii) Quantum mechan-
ics. Force-field SF example includes terms with predetermined energy terms that take
in account the interaction energies of the PL complex such as the DOCK SF shown in
Figure 2.9. These energy terms include the van der Waals and electostatic interations
between protein-ligand complexes atom pairs. These energy values are summed to
compute the binding energy as represented in Equation 1 of Figure 2.10. Li et al. (2019)
comments than force field techniques are somewhat restricted in providing an actual
representation of the potential energy and other related parameters that effect prediction
accuracy. The solvent models, as shown in Equation 2 of Figure 2.10, try to compensate
for a better representation that the force-field method by adding solvation/desolvation
effects (Gsolv) to the atom interactions (example water). In Quantum mechanics, the
scoring function is based on covalent interaction, polarisation, and charge transfer, to
achieve higher accuracy at the expense on computation cost.

Knowledge based functions. Knowledge based functions are based on statistical
rules extracted from analysis of a dataset protein-ligand complexes (the knowledge
base), such as the Protein Data Bank (PDB). The Potential of Mean force (PMF) enhanced
by Muegge (2006) derive statistical preferences as potentials for PL interactions and can
be defined as the sum of interaction energies between all the PL atoms pairs for a par-
ticular distance.

An additional category has been defined by Su et al. (2018) where the newer descriptor-
based machine learning SF class is included. Different ML SFs have been developed where
most of them are generic for all protein families, however some researchers focused on
a protein family specific approach (Ain et al., 2015). Ain et al. (2015) comment that in
general specific protein family models do not improve the performance, since some pro-
tein families see a gain in performance, but others experience a decline. The following
section briefly outlines the differences in the classical SF and discusses the limitations

51

Chapter 2. Background & Literature Overview 2.4. Related Work

Figure 2.10: Physics-based classical scoring functions can be grouped into 3 categories
— Force Field, Solvent Models, and Quantum Mechanics. Reproduced from Li et al.
(2019).

experienced in such methods.

2.4.2 | Machine Learning to improve Scoring Functions
The ML models have been shown to outperform the accuracy of the binding prediction
for classical methods (Ain et al., 2015). The difference in scoring power is due to several
limitations of the classical models. One of the limitations is related to the linear functions
used to define the classical models whilst ML techniques have the advantage to fit non-
linear functions to the data. Therefore classical SF have a more imposed functional form
defining the relationship between PL complexes, that is restricted to the parameters
including the pre-defined model.

One of the major reasons for this increase in performance is the ability of ML models
to use all available data for feature extraction. In ML models it was shown that adding
more training data improved the predicted results. Throughout the years, new training
data has been consistently been made available such as through various updates to the
PDBbind datasets (Liu et al., 2017b), as is illustrated later on in Figure 3.2. Ain et al.
(2015) have shown that as the training data availability increases across the versions of
PDBbind, the results of the classical SF are unaffected, on the contrary to machine learn-
ing models. Ain et al. (2015) have compared this behavior using Autodock Vina with RF
SF models. Therefore, the classical methods seem not to make any use of the new data
as consistent results were achieved for bigger datasets. This also implies that as ML
models use the new training data, then the performance gap to the classical methods

52

Chapter 2. Background & Literature Overview 2.4. Related Work

can also potentially increase.

This behaviour is related to the fact that classical models have predetermined func-
tions (Figure 2.9). Classical scoring functions assume a predetermined relation that can
be derived from statistical or empirical knowledge. However, since this is predeter-
mined it is inherently a rigid approach that does not generalise well and would lead
to poor predictions for those complexes that do not conform with the predetermined
assumptions of the model. This contrasts with ML, where the function is not known
before training, and the SF is built from the data describing protein ligand complex it-
self using representation learning. Therefore, ML models are able to use the additional
data to adjust its function and improve its generalisation for better prediction results.
Similar conclusions were also highlighted in the work of Li et al. (2015) where the au-
thors showed that better correlation coefficients between actual and predicted affinities
where achieved over Autodock Vina (Trott and Olson, 2010) as more training data was
used.

2.4.3 | Machine Learning Approaches
The pioneers of ML approaches have used these methods way back in 2004. Deng
et al. (2004) have used kernel partial least squares as the first approach to non-liner SFs.
The first Neural Network (NN) based SF was also implemented by Artemenko (2008).
However, these early approaches achieved modest results, very similar to the results
achieved by classical scoring functions. These researchers did not have an available test
set for benchmarking, so it was difficult to rank which of these SF performed better and
it was difficult to compare to the state of the art.

In 2010, RF-score (Ballester and Mitchell, 2010) was the first machine-learning method
to significantly obtain a higher performance in affinity prediction and is one of the most
prominent examples of ML SFs. The RF-score used simple element-to-element counts
as features between atoms of the protein and ligand around the binding site. These
descriptors were used to train a Random Forest (RF). NN-score (Durrant and McCam-
mon, 2010) which uses a number of neural networks was also proposed in 2010 and
also showed good results, significantly higher than the classical methods. These two
approaches have generated a lot on interest to utilise ML for SBVS binding affinity pre-
diction and inspired the new wave of SF.

However, Gabel et al. (2014), have indicated that although RF-score (Ballester and
Mitchell, 2010) achieved great results in terms of scoring power, when tested on dock-
ing tests it performed poorly and much worse than the classical methods. Su et al. (2018)
define scoring power as the ability of a SF to predict the binding affinity in a linear corre-

53

Chapter 2. Background & Literature Overview 2.4. Related Work

lation with the experimentally known affinities. On the other hand they define docking
power as the ability of a scoring function to identify the native ligand binding pose
among computer-generated decoys. Gabel et al. try to understand how a ML model
with very simple descriptors used in RF score (element to element distance counts), can
outperform models using more descriptive protein-ligand interaction attributes. Gabel
et al. (2014) hint that such models are attributed to non-causal bias, explained more re-
cently by Sieg et al. (2019) and is discussed in more detail later in Section 2.4.4, where
the models might be performing well but for the wrong reasons.

Gabel et al. (2014) conclude that the scoring function is used also for VS and pose
prediction, and it is important to evaluate the scoring function also in terms of docking
power and screening power to validate the capacity of the SF to enrich hit lists, so that
the SF is not built in isolation.

Wang and Zhang (2017) have later counter argued the criticism done by Gabel et al.
(2014) on the extent that ML models create black boxes, and provided insight into the
decisions being taken by the RF. Wang and Zhang (2017) further explain that the poor
results in docking tests, occurred because the RF model used by Ballester and Mitchell
(2010) is not able to extrapolate the regression function for unseen data, but is limited to
interpolation within the range that was available during training. A predicted output,
ypred for a given test input is within the range of min(ytrain) and max(ytrain). Therefore,
any unseen data outside the binding affinity of the training data would be predicted as
either the min or max of the range of the training data. Wang and Zhang (2017) comment
that this extrapolation feature is required for docking and screening, and is the reason
why RF-score (Ballester and Mitchell, 2010) performed badly in docking tests.

In order to cater for the bottleneck in RF-score (Ballester and Mitchell, 2010), Wang
and Zhang (2017) have used RF to optimize the Autodock VINA classical SF. Autodock
VINA being one of the best performing classical SF obtained good scoring and screening
power results, provided a good base score and tackled the extrapolation issue. The RF
model was used as a correcting factor to the VINA score. Wang and Zhang‘s new model,
∆vinaRF20, was therefore composed of two components. The first component was the
VINA score and the second is a RF correcting factor based on 20 pharmacophore-based
features, to take advantage of the RF improved scoring accuracy. ∆vinaRF20 achieved
top rank in all power tests in the CASF-2016 benchmark. Developing a robust protein-
ligand scoring function that is able to improve the 3 SF use cases is major challenge in
the area of structure based drug design. ML functions still rely on feature engineering
as discussed by Stepniewska-Dziubinska et al. (2017), that requires expert knowledge
to preprocess the data.

54

Chapter 2. Background & Literature Overview 2.4. Related Work

2.4.4 | Deep Learning Approaches
Deep Learning (DL) has been recently applied for drug discovery, where multiple hid-
den layers are used to build a deep neural network (DNN). The key advantage of DNN
is the ability to automatically extract features and create a complex representation of
the data through the hidden layers without the need of applying feature engineering
(Pérez-Sianes et al., 2019). Feature extractions thus occurs as a natural byproduct of
fitting the input to the model‘s parameters. Deep learning models allow for further re-
duction in feature engineering and reliance on expert knowledge. The first deep neural
network used for VS was introduced by the winning team of the 2012 Kaggle Merck
Molecular activity challenge (Kag, 2012) where the team applied a multi-task deep feed
forward network for quantitative structure-activity (QSAR) LBVS. This work was later
published by Ma et al. (2015) which generated a lot of interest and excitement for the
use of DL in this field. Ma et al. (2015) have achieved an average Pearson correlation
coefficient of 0.496 using a multi-task DNN compared to the 0.423 obtained when using
an RF model.

Figure 2.11 provides an overview of the deep learning methods utilised specifically
for SF available in the literature after the work of Ma et al. (2015).

The Convolutional Neural Network (CNN) is one of the most common DL architec-
tures used for SF. The CNN uses a number of sequential layers of convolutions and
pooling modules to encode the hidden features of the data, and then use a fully con-
nected feedforward NN layers for classification or regression. One of the advantages
of CNNs in the area of structure-based drug design is its ability to capture local spatial
information within the input. This property can be used to capture spatial information
of interactions between protein-ligands. CNN models have been applied to SF develop-
ment (Jiménez et al., 2018; Liu et al., 2019; Ragoza et al., 2017; Stepniewska-Dziubinska
et al., 2017; Zheng et al., 2019). CNN models have achieved great results for image
recognition and is also a popular method for SBVS as reported in Rifaioglu et al. (2018)
and Pérez-Sianes et al. (2019). Table 2.1 provides a summary of the methods discussed
in this section highlighting the methods, evaluation, and results achieved.

CNN when compared to more traditional ML methods (such as methods used in RF-
score and NNscore), do not rely on expert knowledge for feature selection but uncover
the hidden features automatically directly from the data. In doing so, the resultant
model can be seen as a black box where the actual features that are important to the
model may be difficult to determine.

55

Chapter 2. Background & Literature Overview 2.4. Related Work

Figure 2.11: Deep Learning based Scoring Function literature overview, providing a
comprehensive summary of the literature available. The sequence of literature high-
lighted here also represented the sequence used to introduce this literature in this sec-
tion. Deep learning methods for scoring functions are relatively recent considering that
a first DL method was published in 2017. The work of Ma et al. (2015) is not directly on
scoring functions, however it is included for its importance in defining DL methods for
use in VS techniques.

56

Chapter2.
Background

&
Literature

O
verview

2.4.
Related

W
ork

Table 2.1: Summary of literature review highlighting approach, evaluation dataset and metric, and results for the literature
discussed in Section 2.4.4 to 2.4.6.

Method Year Authors Approach Eval Set Eval Metric Results

Kaggle Challenge 2015 Ma et al. Multi-task DNN Kaggle Merch Set R-Score 0.496

CNN Scoring 2017 Ragoza et al. CNN
DUD-E
CSAR

AUC 0.868

Pafnucy 2017 Stepniewska et al. 3D CNN
CASF-2013
CASF-2016

R-Score
0.780
0.700

Kdeep 2018 Jimenz et al 3D CNN CASF-2016 R-Score 0.820

DeepDTA 2018 Ozturk et al. CNN - Smiles and Protein sequences.
Davice
KIBA

CI (Concordance Index)
0.878
0.863

PLEC-nn 2018 Wojciowski et al. ANN
CASF-2013
CASF-2016

R-Score
0.774
0.817

DeepBindRG 2019 Zhang et al. ResNet CNN CASF-2013 R-Score 0.639

OnionNet 2019 Zheng et al. CNN
CASF-2013
CASF-2016

R-Score
0.782
0.816

EIC-Score 2019 Nguyen et al. Differential Geometric with ML (GBT)
CASF-2013
CASF-2016

R-Score
0.774
0.826

AGL-Score 2019 Nguyen et al. Algebriac Graphs with ML (GBT)
CASF-2013
CASF-2016

R-Score
0.792
0.830

Ligity 2019 Ebejer et al. Knowledge-Based DUD-E AUC 0.44-0.99

Learn From Ligand 2020 Boyles et al. ML + Ligand RDKit features
CASF-2013
CASF-2016

R-Score
0.786
0.826

57

Chapter 2. Background & Literature Overview 2.4. Related Work

Ragoza et al. (2017) were the first to successfully use CNNs to implement a DL scor-
ing function that predicts the docking score for a drug target interaction which was then
used for SBVS and pose prediction. Earlier attempts in 2015 were made by Wallach et al.
(2015) on AtomNet , however their research is yet unpublished. Ragoza et al. (2017)
claim that their CNN SF outperforms Autodock Vina on the DUD-E (Mysinger et al.,
2012) and CSAR (Dunbar Jr et al., 2011) datasets for both screening and pose prediction
tasks respectively. For the input of the CNN, Ragoza et al. have discretized the protein-
ligand structure into a 3D grid of 24Å for each side which was centered at the binding
site. The 3D grid is composed of multiple 2D grids — one for each heavy atom of the
protein-ligand complex analogous to RGB channels in images. Each element in the grid
stores information about the type of atom and at that particular location. The atom grid
information representing the particular heavy atom at 0.5Å resolution discretised po-
sitions is represented using a density distribution function A(d, r), dependent on the
distance d from atom centre, and the van der Waals radius, r. Although, Ragoza et al.
(2017) utilize the CNN for automatic feature extraction, the authors still applied an ele-
ment of feature engineering with the way they have represented the atoms using their
own density distribution function A(d, r). Ragoza et al. (2017) obtained an AUC of 0.868
for screening using their developed scoring function which outperformed Vina (0.716),
RF-Score (0.622), and NN-Score (0.584). Pose prediction assessment of the CNN SF to
distinguish top poses obtained results with an AUC of 0.815, compared to Vina’s per-
formance 0.645. Ragoza et al. (2017) also comment that rotations of their data structures
were used for data augmentation and improved their test results considerably. Since
each layer in their interpretation considered atom positions, rotations are essential part
of training, to make it less sensitive to different protein-ligand orientations.

However, recently Sieg et al. (2019), have reported that the benchmark datasets such
as the DUD-E (Mysinger et al., 2012) amongst others are not suitable for ML approaches
to VS. They comment that ML models are considered as black boxes, difficult to inter-
pret and identify which features are contributing to predicted results. Sieg et al. (2019)
have also reproduced the work done by Ragoza et al. (2017) to evaluate bias information
in the dataset, and have made some bold conclusions. Namely, that the CNN models are
not learning from the features of the protein but are instead just learning from the bias
found in the small molecule features. To test this claim, Sieg et al. (2019) re-implemented
the training method used by Ragoza et al. (2017) but excluded all the protein features
from training. This adjusted model was able to reproduce screening results almost iden-
tical to those when the protein features were used. The authors term this type of bias as
non-causal bias, as good results were obtained however the results do not represent any
binding mechanism of the protein-ligand interaction.

58

Chapter 2. Background & Literature Overview 2.4. Related Work

Additionally, Sieg et al. (2019) also claim that in reality the CNN model provides little
improvement in the performance over a more traditional ML approach such as random
forest (RF) when the DUD-E dataset was used for training and testing. Sieg et al. (2019)
has also investigated their claims on other CNN such as the work done by Pereira et al.
(2016) (DeepVS), and have reached similar conclusions both in terms of CNN perfor-
mance and the learning ability from the structure. Pereira et al. (2016) have used CNN
to enhance the performance of DBVS.

Therefore, given the contribution made by Sieg et al. (2019) it seems that with the
current available datasets it is difficult to evaluate different VS model as the benchmark
datasets are affected by bias. Sieg et al. provide some recommendations on a possible
approach moving forward, however do not provide an alternative benchmark for ML
in SBVS. Therefore, until a benchmark is curated specifically for ML, it is difficult to test
and evaluate different ML and DL models. One of the main reasons of this failure is
due to the artificially created decoys in the DUD-E dataset. The decoys were created to
have a similar structure and physiochemical properties such as molecular weight (MW),
LogP, and number of hydrogen bond acceptors, of the actual ligand. This obviously
presents a new challenge to find a suitable dataset suitable for ML techniques.

In our approach the PDBbind dataset is used which contains a list of experimen-
tally validated complexes, which include also experimentally measured binding affinity
data. This dataset is detailed in Section 3.3. Since these are experimentally validated
complexes they do not suffer from bias introduced by artificially created decoys. Due to
the unavailability of experimental results for inactive molecules it is difficult to include
the inactives in the training. Binding affinity data may also not be available for inactive
molecules and therefore it might be impossible to obtain such data to use for training.
Wójcikowski et al. (2017) have added training decoys by setting an identical value that
represents a known non-binding affinity value for all the decoys used, however do not
comment if these improved the results.

2.4.4.1 | Conv3D CNN Scoring Functions

Pafnucy proposed by Stepniewska-Dziubinska et al. (2017) is one of the most promising
DL SF models where the authors achieved a Pearson Coefficient, R, for the predicted
versus actual binding affinity of 0.70 on the CASF-2013, and 0.78 on the CASF-2016
benchmarks respectively. Stepniewska-Dziubinska et al. (2017) claim that their pafnucy
model was outperformed only by RF-scorev3 (Li et al., 2015) with R of 0.74.

Stepniewska-Dziubinska et al. (2017) continued on the work done by Ragoza et al.
(2017) to build a 3D CNN model with a 4D tensor to represent 19 protein-ligand fea-

59

Chapter 2. Background & Literature Overview 2.4. Related Work

tures in 3D. The 4D tensor includes discretised atom location in the first 3 dimensions,
whilst the features for the particular atom are encoded in the 4th dimension. This can
be visualised as a 3D object with 19 different channels. Stepniewska-Dziubinska et al.
(2017) label their model as 3D CNN as they utilise the Conv3D Tensorflow module to
train the 3D model with 19 input channels. In order to obtain consistency in input fea-
ture sizes, the complex was cropped to a defined size of 20Å, resulting in 21 discrete
locations. Any atoms that are outside this boundary are not included as they are as-
sumed not important for interactions at the binding site. The concept of input features
is similar to those presented by Ragoza et al. (2017), however Stepniewska-Dziubinska
et al. extend the input to 19 features, which include:

� Atom types. Heavy atoms types use a 9-bit encoding to represent elements B, C,
N, O, P, S, Se, halogen, and metal types.

� Hybridisation. Hybridisation state are represented by one integer ∈ [1, 2, 3]

� Heavy Valence. Integer to count the number of bonds with other heavy atoms.

� Hetero Valence.Integer to count the number of bond to other heteroatoms.

� SMARTS. 5-bits to encode atom properties from hydrophobic, aromatic, acceptor,
donor, and ring. SMARTS is a type of language, similar to SMILES, that describes
molecular patterns used to search such molecular substructures.

� Partial Charge. Partial charge float value for the atom calculated using UCSF
Chimera (Pettersen et al., 2004) software.

� MolType. A value of ’1’ is used to represent a ligand atom, whilst ’-1’ represents
protein atom.

This Pafnucy protein-ligand complex representation can be generated using tf.bio4

python package developed from the same author. These input features are fed to a 3
tier convolution-pooling layers, and a 3-tier fully connected network with a single out-
put neuron. A key difference from Ragoza et al. (2017) is that the Pafnucy model is used
as a regression model for binding affinity prediction only, and was trained on bind-
ing affinity data from PDBBind. The PBDbind v2016 was split in training, validation,
and testing datasets. The core set was used for testing, whilst 1,000 complexes from
the refined set were used during validation, whilst the general set and the rest of the
refined set were used for training. A similar approach was used to split the datasets

4https://gitlab.com/cheminfIBB/tfbio (last accessed 26-06-2020)

60

https://gitlab.com/cheminfIBB/tfbio

Chapter 2. Background & Literature Overview 2.4. Related Work

for LigityScore. The Pafnucy model includes the locations of the atoms as part of the
representation. In order not to have a model that is sensitive to the PL orientation,
Stepniewska-Dziubinska et al. (2017) have augmented their data to include all possi-
ble 90◦ rotations of their 20Å space. Therefore training was performed on 24 different
rotated variants of each complex and showed that the model extracted the same infor-
mation from different input representation. To explain how the model is using the input
data, the authors have extracted the weight ranges for the 1st layer of the CNN. This has
19 input channels corresponding to each of the features mentioned earlier. Pafnucy uses
also L2 regularisation in the Adam optimisation (Kingma and Ba, 2014), which has the
capability of zeroing unimportant features. The channel with wider ranges are passing
more information to subsequent layers and therefore are more important. The top four
influential features includes moltype, hydrophobic, donor and aromatic features, whilst
the least important where atom type B and Se which is expected since these atom type
are present less frequently. The feature influence was determined by looking at the dis-
tribution of weights in the first convolution layer. Since each feature (example B or C
elements) represents a separate input channels, the weights at the first layer would cor-
respond to the particular feature only. Stepniewska-Dziubinska et al. (2017), therefore
take the features with the larger range of weight values as the most influential. The 4D
tensor used was well suited for CNN learning and effective to keep spatial and chemical
information.

The Kdeep (Jiménez et al., 2018) CNN model achieved state of the art results on the
PDBBind v.2016 results core test with R value for 0.82, early in 2018. Jiménez et al.
(2018) have used the general and refined sets for training, similar to approach taken
by Stepniewska-Dziubinska et al. (2017). However, they have extending their testing
to various CSAR Dunbar Jr et al. (2011) datasets due to claims by previous authors
Gabel et al. (2014) that testing on core set might provide over optimistic results. Jiménez
et al. (2018) have used input descriptors similar to Ragoza et al. (2017). Their input
features use a 3D voxel representation where each channel encodes a particular property
of the atom. Similar to Pafnucy, Kdeep also used 3D CNN. Each protein-ligand complex
is represented by a 4D tensor, where each 3D hyper-plane representes the protein-ligand
complex with respect to a particular property only as shown in Figure 2.12. The eight
properties chosen for Kdeep include: hydrophobic, aromatic, HBA, HBD, Cation, Anion,
Metallic, and excluded Volume. These are detailed in Table 2 of Jiménez et al. (2018).

Therefore, the 3D plane represents the PL complex with respect to that property only.
If we take the 3D hydrophobic layer, all the hydrophobic atoms are selected, whilst the
rest are of the atoms are discarded. In order to transform the selected atoms to a suitable
numerical representation, a function n(r, rvdw) is used to determine the contribution of

61

Chapter 2. Background & Literature Overview 2.4. Related Work

Figure 2.12: The Kdeep scoring function reproduced from Jiménez et al. (2018). (a) protein
and ligand are featurised using eight pharmacophoric-like properties. (b) the descrip-
tors are processed by a Conv3D CNN for training of the binding affinity relationship
and prediction of unseen examples.

each atom that depends on the Euclidean distance r and the Van der Waals radius rvdw.
This is similar to the method used by Ragoza et al. (2017) of the distribution function.
The other properties are extracted the same way to construct the 4D representation.

Kdeep using an architecture similar to Squeeznet (Iandola et al., 2016) but shallower due
to smaller input (24× 24× 24× 8). ReLU is used for activation, whilst Adam optimis-
tation with default parameters, mini-batch size of 128, and a learning rate of 10−4.They
have achieved good results in the CASF-2016 benchmark on scoring, and have also out-
performed Stepniewska-Dziubinska et al. (2017). Other SFs such as RF-score Ballester
and Mitchell (2010) and X-Score Cheng et al. (2009a) outperformed Kdeep in the CSAR
test sets, with an average difference in R of 0.11 and 0.05 respectively.

2.4.4.2 | CNN Scoring Functions

Öztürk et al. (2018) propose a binding affinity prediction model based on only sequence
information of the protein-ligand complex. This approach varies from the previous
mentioned model in the sense that it uses a 1D feature representation instead of multi-
dimensional ones. For the 1D feature representation Öztürk et al. (2018) use the raw
protein sequences and the ligand SMILES strings to extract information using separate
CNN blocks. These two CNN blocks are combined with a common FC layers block, to
output binding affinity prediction. This topology was termed DeepDTA. The SMILES
and protein sequences where analysed and the authors extracted 64 and 25 categories
(unique letters) respectively. The SMILES and sequences were then encoded so that
each category corresponds to an integer (example, ’C’:1, ’H’:2, ’N’:3, etc). Similar to
Pafnucy and Kdeep, DeepDTA uses Adam optimisation with default parameters includ-
ing learning rate, and ReLU activation. Öztürk et al. (2018) have evaluated DeepDTA on

62

Chapter 2. Background & Literature Overview 2.4. Related Work

the Kinase dataset Davice and KIBA dataset, and report better results from their base-
lines. Since their dataset and evaluation method is different from the other literature it
is difficult to compare DeepDTA with them.

CNN models have also been used for specific VS applications. Liu et al. (2019) have
developed a CNN model labeled DeepSeqPan for binding affinity prediction specifically
for the HLA protein and peptide binding. Their model is interesting as it was designed
for multi-task output using two feed forward components after the convolution and
pooling layers — opposite of DeepDTA. These components are used to build both re-
gression and classification outputs that predict the binding affinity, and predict the bind-
ing probability respectively. For their input they use the sequence of the peptide and
the protein to map the sequence using one-hot encoding. Therefore, for a given pep-
tide composed of 9 amino acids, a matrix of 9× 20 is created to represent the peptide
since there are 20 amino acids in total. A similar approach was taken for the protein se-
quence encoding, and both encodings were used to feed a CNN network. DeepSeqPan
include BatchNorm layers that are also applied before activation, and utilise the Leaky
ReLU activation. Liu et al. (2019) have thus used a simple model for the protein and
peptide interaction that uses one hot encoding, and use the CNN for automatic feature
extraction to uncover any hidden patterns in the data.

Zhang et al. (2019) tackle the problem of binding affinity prediction using a CNN ar-
chitecture based on the ResNet model (He et al., 2016), inspired by the Pafnucy’s CNN
model. Zhang et al. (2019) mention the difficulty in tackling the open problem of how
to best represent the protein-ligand interaction data and use ResNets to include much
deeper networks capable of extracting more complex features. The authors have created
a 2D input from one hot representation to encode different atom types of the ligand and
protein separately. Each ligand atom was represented using an 84 dimension one hot
vector, whilst the each protein atom was represented using a 41 dimension one hot vec-
tor. The ligands were grouped in 3 categories based on their value of logP. The interac-
tion between ligand and protein atoms is computed for a max distance of 4Å to maintain
the important contact information. The extracted atoms pairs are then converted to their
respective one hot encoding values. The atom pairs were limited to 1000, to maintain
a fixed size input. Complexes with less pairs were padded with zeros, whilst those
with more pairs, which were rare, were discarded. Therefore the input size for each
complex representation was of size 125× 1000. Zhang et al. (2019) label their model as
DeepBindRG.

The authors used various dataset including the PDBbind v2018 for training and vali-
dation, whilst used the CASF-2013 (Li et al., 2014a), CSAR (Dunbar Jr et al., 2011), and
Astex Devierse Set (Hartshorn et al., 2007) were used for testing. The ResNet was con-

63

Chapter 2. Background & Literature Overview 2.4. Related Work

structed with 7 convolutional layers using 1× 1 and 3× 3 kernels sizes, one max pool
layer and a FC layer with a single output neuron for affinity prediction. Zhang et al.
(2019) report a R value of 0.6394 on the CASF-2013 test set. Although DeepBindRG has
a better performance than Autodock Vina on the CASF-2013, their results show worst
performance than the previously mentioned models.

A recent study proposed by Zheng et al. (2019) compares their model to Stepniewska-
Dziubinska et al. (2017) and criticize the Pafnucy model that the protein-ligand inter-
actions in a 3D grid box of 20Å are not sufficient to capture all the PL interactions, and
suggest that other long-range interactions outside the 20Å , termed non-local electrostatic
interactions are also important. In order to capture all the interactions between protein-
ligand complexes Zheng et al. (2019) divide all the 3D space of the binding site into a
number of shells or zones as shown in Figure 2.13, and count the number of different
element to element interactions within each shell. This method is rotationally invariant
since the same element to element count are taken irrespective of the orientation of the
complex. This element to element interaction count was inspired by the RF-score model
Ballester and Mitchell (2010). Zheng et al. (2019) further comment that their model has
the advantage of using simple features that do not introduce additional hypothesis and
estimations to avoid extra noise or bias. Zheng et al. (2019) mentions that the partial-
charge is one such feature used by Stepniewska-Dziubinska et al. (2017) as it calculated
differently using various assumptions.

Figure 2.13: OnionNet boundary shells partitioning of the protein around the ligand in
3D space. Reproduced from Zheng et al. (2019).

64

Chapter 2. Background & Literature Overview 2.4. Related Work

The boundary shells, symbolised the onion shell, were created around each atom of
the ligand. RF-score considered 9 different elements for the protein and ligand, and
this resulted in a possible 81 features. On the other hand OnionNet used 8 different
elements for a total of 64 features however different zones are considered to count the
element interactions and not a single cut-off distance. Zheng et al. (2019) defined 60
zones and obtain an input dimension of 64 × 60 for each complex, that is analogous
to a grayscale image. Using this approach Zheng et al. (2019) trained their model on
the PDBbind v2016 dataset and benchmarked on the both v2013, and v2016 core sets,
and with the Pafnucy model. They have achieved a value for R of 0.816 on the 2016
core dataset and R of 0.782 for the 2013 dataset — a significant improvement over the
Pafnucy model, however similar performance to Kdeep.

In order to get more insight on the features extracted by OnionNet, Zheng et al.
(2019) conducting tests that excluded one shell at a time during the training to uncover
which shells contribute more to the Pearson Coefficient. The loss with the removed
shell was compared with the loss of the best performing model. The larger the change
in loss noticed, the more important is the feature. Their experiments show that the
shells closer to the ligand are more important, as was intuitively expected, however
also show that non-local interactions have significant importance. Zheng et al. (2019)
explore further the different feature importance of element-pair combinations, where
the Oxygen-Phosphorus, and Carbon-Sulfur pair were the most significant. Zheng et al.
(2019) conclude that the enrichment for these less common atom type might be used ref-
erence points during feature extraction. The OnionNet CNN model using 3 convolution
layers with kernel size of four and no pooling and BatchNorm, followed by three fully
connected layer and a single output neuron.

As described earlier, Gabel et al. (2014) show that the RF-score model performed badly
in docking and screening tests. In their study Zheng et al. (2019) do not mention that
they have tested OnionNet for docking and screening tests. Therefore since they use
similar features to RF-score, it is not known if OnionNet performs also badly in docking
and screening tests. However, a recent study by Shen et al. (2020) answers these queries.

Shen et al. (2020) has criticised ML based scoring functions on their lack of usability
due to poor performance in screening, ranking, and docking tests. The authors high-
lighted the need of a systematic assessment of these ML SFs. They report on the limita-
tion of the modern SF to perform in all CASF power scores mentioned in Section 2.3.1.
To systematically assess ML SFs, Shen et al. (2020) choose a number of SFs and assess
them on all the powers of the CASF v2016 benchmark. These include the Pafnucy and
OnionNet models introduced earlier, that were only assessed on scoring power by their
authors. Therefore, the work Shen et al. (2020) seems a continuation of the previous

65

Chapter 2. Background & Literature Overview 2.4. Related Work

work done Gabel et al. (2014), and seeks to explore the usability of these scoring func-
tions. Shen et al. (2020) comments that most of these ML SFs, including Pafnucy and
OnionNet, do not perform well in the CASF screening and ranking powers, and some
even perform worst than classical functions.

One of the main reasons for bad performance is the fact that most of these models are
trained only on valid protein-ligand complexes. The training does not include any de-
coys, and prediction for such cases is intuitively difficult. ML SFs rely on representation
learning during training to extract the underlying feature maps. Ranking and Screening
powers requires the evaluation of non-binding protein-molecule pairs, and if such cases
are not used in training it is difficult to have good performance in these areas. Therefore
this might suggest that a different training set may be required for different SF tasks.

2.4.5 | Ligity Representation
One of the limitations of Pa f nucy and Kdeep is the dependency on the coordinate frame.
3D CNNs treat the structure like a 3D images. The representation can be thought of as
one snapshot of the structure. However if the orientation from where the snapshot is
taken is changed, a different representation of the same things is obtained. The authors
have worked around this limitation by introducing different systematic rotations of the
same input during training. However, these might present additional challenges when
testing novel complexes that can take different orientations.

This limitation has led us to explore methods that are inherently rotationally invariant.
One such model that is not dependent on the coordinate frame is Ligity developed by
Ebejer et al. (2019). Ligity is a hybrid VS technique that collects key interaction features
within the protein-ligand complexes. These key interaction points are known as ’hot-
spots’ and are defined by considering specific pharmacophoric features that lie within a
predetermined distance threshold between the protein and ligand feature pairs. Each of
these pharmacophoric features that interact together are termed Pharmacophoric Interac-
tion Points or PIPs. Once these pairs are extracted, the Ligity descriptor for the ligand is
created by considering only the PIPs from the ligand space. Two variants of descriptors
were considered by Ebejer et al. (2019) that use 3-PIP or 4-PIP combinations. Combi-
nations of all possible 3-PIP or 4-PIP sets from the ligand space are considered when
creating the descriptor. Considering the 3-PIP case for simplicity, the distances between
the 3-PIP triangular structure created in space are extracted. These distances are discre-
tised to find the co-ordinates of a 3D hypercube, representing the Ligity descriptor, so
as to increment the count at that voxel location as shown in Figure 2.14. All 3-PIP com-
binations from the ligand pool are used to increment the respective location of the 3D

66

Chapter 2. Background & Literature Overview 2.4. Related Work

hypercube. This is represented in the schematic of Figure 2.14. Since the Ligity descrip-
tor is built using the spatial distribution of PIPs, this descriptor is rotationally invariant
and thus suitable for our required representation.

Figure 2.14: Ligity 3-PIP triangular structure showing mappings of the distances as 3D
coordiantes to update binning count on the 3D hypercube for features HBA, HBA, hy-
drophobic. Reproduced from Ebejer et al. (2019).

These hypercube Ligity descriptors are used to build a representation from a known
protein-ligand complex. In a virtual screening exercise, Ligity descriptors for libraries
of small molecules are used to compute a similar descriptor using the same target pro-
tein. The known ligand descriptor and the small molecules descriptors are compared
using the Tversky similarity measure to find their respective similarity score. This list
of molecules for each protein-ligand complex is then ranked by decreasing similiarity
score. A high similarity score represents a potential hit for that target protein. Ligity
was benchmarked using the DUD-E database (Mysinger et al., 2012), and Ebejer et al.
(2019) report a mean area under the receiver operation characteristic curve (AUC) range
from 0.44 and 0.99 for different protein families when using 4-PIP descriptors and the
Tversky similarity. Ebejer et al. (2019) also showed that their method is computationally
efficient and is 20 times faster than docking with Autodock Vina (Trott and Olson, 2010).

2.4.6 | Recent ML approaches
Zheng et al. (2019) (OnionNet) compare their method to another recent model, AGL-
Score, and comments that its authors, Nguyen and Wei (2019a) provided a more complete
local environment where they managed to improve the affinity prediction performance
with an R = 0.833. To date this represents the highest performing ML scoring function.
The better results are achieved as they add novel features relating to the physical and
biological information of the complex using graph theory.

67

Chapter 2. Background & Literature Overview 2.4. Related Work

Nguyen and Wei (2019a) categorise the complex into multiple algebraic sub-graphs
that describe different molecules and their interactions. A subgraph can be represented
in matrix format to describe the interaction between the subgraph elements, and Nguyen
and Wei (2019a) use the Laplacian matrix, its pseudo-inverse, and adjacency matrix to
achieve this. The eigenvalues and eigenvectors of these matrices are then used to ex-
tract the AGL-Score molecule representation that they can use for ML. Although the au-
thors claim that the protein-ligand representation can be used by several ML algorithms
they adopted a simpler ML model and utilised gradient boosting trees (GBT) with 10,000
estimators, depth of 7, and a learning rate of 0.01. Although this is not a deep learn-
ing model it represents an important development in scoring functions for SBVS. AGL-
Score is benchmarked using CASF-2007, CASF-2013, and CASF-2016 on scoring, rank-
ing, docking, and screening powers and achieved very positive results results which
are the best performing scoring function to date. AGL-Score was the top performer for
CASF-2013 on scoring, ranking, docking, and screening powers. Therefore, contrary to
Shen et al. (2020) ML based scoring functions can still perform better and outperform
classical scoring functions in all the benchmark powers of CASF. Shen et al. (2020) on
the other hand acknowledged that AGL-Score had balanced powers and confirms it is
the best performing ML SF, however they mention that its applicability might be limited
for practical cases, and fails to provide a clear description of this. The same authors of
AGL-Score, have published another study based on differential geometry earlier in the
same year and term this method EIC-Score (Nguyen and Wei, 2019b). The authors use
differential geometry based features to represent the protein ligand complex with GBT
models, and achieved a best R-score performance of 0.774 and 0.826 for the CASF-2013
and CASF-2016 respectively.

Wójcikowski et al. (2019) introduce a novel interaction fingerprint (IFP) to train a SF
for prediction of binding affinity which is termed Protein-Ligand Extended Connec-
tivity (PLEC). Their feature representation is based on Extended-connectivity finger-
prints (ECFPs) that describe topological fingerprints about the environments surround-
ing each atom. These type of fingerprints are then used to train a number of ML models,
where Wójcikowski et al. (2019) achieve best predictions results with an ANN, termed
PLEC-nn. PLEC-nn achieves an R-score of 0.817 and 0.774 on the CASF-2016 and CASF-
2013 scoring power benchmarks. Wójcikowski et al. (2019) state they PLEC was not
tested and optimised for the CASF screening and docking powers and highlight that
this will be part of their future work.

Another recent study is from Boyles et al. (2020). Their method does not include any
deep learning methods however it aims to improve existing methods and we consider
it an important recent development in scoring functions. Boyles et al. (2020) claim that

68

Chapter 2. Background & Literature Overview 2.4. Related Work

not enough ligand-based features are used in developing scoring function. Therefore,
they investigated whether more detailed ligand features can improve binding affinity
of the SF. Existing SF already include ligand features in their model such as Autodock
Vina Trott and Olson (2010) (number of rotatable bonds) however these are limited to
only a few features. Boyles et al. (2020) take a number of classical (Vina) and ML (NN-
Score (Durrant and McCammon, 2010), RF-score (Ballester and Mitchell, 2010), RF-score
v3 (Li et al., 2015)) models and added an RDKit feature set (Landrum, 2020), where the
RDKit feature set is composed of around 200 1D and 2D ligand molecular descriptors
features obtained from the RDKit Descriptors module. Boyles et al. (2020) show that
they improved results consistently across all models tested achieving approximately an
R value of 0.82 for the ML models and 0.792 for the Vina when tested using the PDB-
bind 2016 core set using 5-fold cross-validation (CV). Boyles et al. (2020) have tested the
RDKit features (ligand-based features only) and report results for R similar to classi-
cal functions. The top ligand features that consistently improved results included the
MollogP, TPSA, Estate-VSA1, and MolMR features.

It is also worth mentioning that Stepniewska-Dziubinska et al. (2017), and Zheng et al.
(2019) do not mention the use of CV techniques since the PDBbind core set is predefined.
On the other hand, Ragoza et al. (2017) have used 3-Fold CV for all their results. Ad-
ditionally, test protein structures with a similar structure of 90% or more were grouped
into the same fold to avoid test structures that are very similar to the those used in train-
ing. A similar approach was taken also by other researchers such as the work of Jiménez
et al. (2018) and Boyles et al. (2020).

2.4.7 | Influence on LigityScore
A number of studies mentioned in this review were important for the development
of LigityScore, and different techniques inspired various aspects of our model. The
Pafnucy model was used as the benchmark for evaluation in our study and has moti-
vated us to find an alternative representation for the protein-ligand complex based on
its interacting and structural properties, and use the CNN models for automatic feature
extraction. We have used their CNN model for the baseline parameters used in Ligi-
tyScore. The Pafnucy model was chosen for the baseline as it is well documented and
the authors provided the source code that enabled us to understand the details of their
work to be able to replicate it for evaluation purposes and be confident in comparing
like with like models.

Ligity was used as the basis of our study and has inspired us to select pharmacophoric
features from both the protein and ligand that can be useful for protein-ligand binding

69

Chapter 2. Background & Literature Overview 2.5. Summary

representation that is rotationally invariant. This was mainly by intuition as these were
not tested for use as a scoring function based on CNN. However, these pharmacophoric
features (discussed in depth in the Section 3.5), were in a way partly validated as some
of them were also used by the Pafnucy and Kdeep models. LigityScore method considers
6 pharmacophore features (hydrophoic, acceptor, donor, aromatic, cation, anion), which
are all part of the Kdeep pharmacophric features, and 4 (hydrophoic, acceptor, donor, aro-
matic) of them are also part of Pafnucy. Stepniewska-Dziubinska et al. (2017) showed
that the hydrophobic, donor, and aromatic features ranked 2nd to 4th from Pafnucy’s
most influential features, as was discussed earlier. Additionally other methods such as
OnionNet have inspired us to consider Pharmacophoric Interaction Points (PIPs) that
are further apart, whilst using BatchNorm and ReLU to try and enhance our CNN mod-
els as done by Liu et al. (2019).

Machine learning model can be seen as black boxes and are sometimes more difficult
to explain. Therefore a deeper understanding on the relationship created by these mod-
els is required (Li et al., 2019). Although the perfect protein-ligand representation and
ML model for the development of a scoring function is still not known, we agree with
Li et al. (2019) that with the increase in structural and interaction data, SF based on ML
have the potential to direct the development of future SFs.

2.5 | Summary
In this section we have provided background information on the virtual screening do-
main focusing on the scoring function aspect, and have discussed the CNN architecture
in detail together with its related concepts such as normalisation, weight intialisation,
and optimisation techniques.

In the related work section we have given an overview on the history of scoring func-
tion starting with the classical methods, continuing with ML SFs models, and finally
concluding with a comprehensive overview of the deep learning techniques used in
scoring functions to date, and how this literature shaped our work. In the next section
we explore in detail the components of the LigityScore methods.

70

3

Methodology

This chapter details the LigityScore implementation covering the methods and pro-
cesses adopted to achieve the stated aims and objectives of Section 1.3. The following
will be discussed:

1. The CNN architecture implemented showcasing the various components and tun-
ing parameters

2. A detailed analysis of the datasets used

3. The algorithm used to generate the Pharmacophoric Interaction Points (PIPs) from
the protein and ligand files

4. The algorithm used to extract LigityScore1D and LigityScore3D CNN input fea-
tures

5. A description of the experiments workflow carried out to develop and validate
LigityScore, together with the software and hardware used to run the experiments.

3.1 | LigityScore Implementation Overview
The process to develop the CNN based scoring function is illustrated in Figure 3.1, high-
lighting also the paramaters that can be changed for each module. The major functional
parts for LigityScore1D and LigityScore3D are detailed below:

1. Pre-Processing. The process starts with a pre-processing stage where the PDBbind
files are processed to build a dataset of the complexes available in PDBbind with
their respective binding affinity properties. At this stage the molecular files are

71

Figure 3.1: The schematic represents the major functional blocks used in our approach
to develop a Scoring Function solution for VS. The parameters used in each functional
block are included included as reference. For example PIP Hot-spots extraction can take
two parameters — Lipinski filtering, and the hot-spots Distance threshold factor.

Chapter 3. Methodology 3.1. LigityScore Implementation Overview

validated to check that the PL complexes listed have corresponding molecular
files, and also to fix any errors that occur whilst loading the files using the RDKit
cheminformatics library (Landrum, 2020). This is an important step as LigityScore
depends on the correct loading of molecular files in RDKit in order to extract and
generate the LigityScore features. If any errors are found, the molecule will not
be loaded and the complex would have to be discarded from the dataset. The
process taken to resolve this issue, and the total number of complexes discarded
are detailed in Section 3.3.

2. PIP (Hot-spots) Generation. This module loads the complexes and searches for
the pharmacophoric features. All the possible pairs of pharmacophoric features
across the protein pocket and the ligand are built, and are then run against a num-
ber of constraints. The resultant feature pairs represent the PIPs or interaction hot-
spots for the particular complex. The hotspot details are saved to the hot-spots
dataset for use by the subsequent task. The constraints used for PIP generation
method are described in Ebejer et al. (2019).

3. Generation of LigityScore Descriptors. The LigityScore Descriptors module utilises
the hot-spots dataset to generate a feature descriptor for each complex. For each
complex a feature matrix is generated for LigityScore1D, whilst a feature cuboid
is generated for LigityScore3D. Both these feature descriptors are depicted in Fig-
ure 3.9 and Figure 3.10 respectively. The name of our models is derived from
the dimensionality of the spatial information used to generate the features. Ligi-
tyScore1D considers two hot-spots at a time that correspond to a particular phar-
macophric feature family pair (example Acceptor-Acceptor). For each possible
family pair a feature vector is constructed, hence the name LigityScore1D. On the
other hand, LigityScore3D uses three hot-spots at a time, and the spatial infor-
mation for the family set (example Acceptor-Acceptor-Acceptor) is encoded in a
feature cube. Generation of the LigityScore descriptors is discussed in depth in
Section 3.6.

4. CNN Training. This module is mainly built using the Pytorch library (Paszke
et al., 2019) and includes a dynamic model to construct a CNN. This dynamic
model was constructed in order to facilitate the testing and evaluation of different
CNN architectures so that it can be invoked by the ’Experiments Pipeline’ high-
lighted below. The CNN module is used to train the network as a scoring function
using the LigityScore descriptors, highlighted previously, as input. The module
tackles a regression type of problem and therefore the output is a continuous value

73

Chapter 3. Methodology 3.2. Baseline for the Study

predicting the binding affinity of the complex. This output is compared with the
real binding affinity so that the network parameters, or weights, are updated us-
ing stochastic gradient descent. Each epoch is validated against the validation set,
composed of 1,000 randomly sampled complexes from the PDBbind Refined set,
and the model with the lowest root means squared error (RMSE) is stored to disk
for use for predicting unseen complexes.

5. CNN Predictions. The Predictions module is used to load the best performing
model and to compute results for the Test Set. The training and validation sets
are also re-evaluated in order to provide RMSE, MAE (Mean Absolute Error), SD
(Standard Deviation in Regression), and R (Pearson Correlation Coefficient) val-
ues for each dataset as results for the evaluation criteria to assess the performance
of the model.

6. Experiments Pipeline. This module combines the Training, Validation and Test-
ing in a one pipeline. This step uses a CSV file to describe a series of experiments
with different CNN paramaters so that training and testing of the model is done
through one pipeline. The CSV file includes parameters such as number of convo-
lution layers, layer filter dimensions, kernel size, training epochs, number of fully
connected (FC) layers, and size of each FC layer. A total of 39 parameters are re-
quired to initialise one experiment. For each experiment the best epoch is chosen
based on the lowest RMSE for the validation set, and the results for the training,
validation, and test sets are evaluated using the CNN model parameters for the
best epoch. The result for each experiment is then stored to disk as another CSV
file.

All the modules listed were developed using Python 3.6 using Ubuntu 18.04 Server.
All processes were run on AWS EC2 instances. The feature extractions modules were
run using ’r5’ memory optimised machines, whilst all CNN training and predictions
were run on ’g4dn’ GPU instances consuming around 2,400 US dollars. Each of the
modules listed above are detailed in the next sections.

3.2 | Baseline for the Study
One of the first steps used to develop LigityScore, was to replicate the work done in
Pafnucy (Stepniewska-Dziubinska et al., 2017), as a way for comparison and evaluation
which are cornerstones for scientific investigation. Their method was recreated using
our own code but using the Pafnucy feature library, tfbio (Stepniewska-Dziubinska,

74

Chapter 3. Methodology 3.3. Dataset

2020), to generate the PL complex feature representation. The same CNN model pa-
rameters were kept. The aim was to achieve similar performance to the results quoted
in Stepniewska-Dziubinska et al. (2017). The replication model was used to calculate the
Pearson correlation coefficient, R, and the standard deviation (SD) in linear regression
as was detailed in Section 2.3. The results of the baseline work we compare our results to
are presented in Section 4.2. Some of the modules used to build our implementation of
Pafnucy, such as the preprocessing module and the CNN training and prediction mod-
ules, were later on used for the development of LigityScore. Correct replication results
would confirm the correct functionality of these modules, validating also that a good
baseline is available to develop our scoring function models.

Our replication model included a number of differences which might explain the
slight difference (∼ 2.5%) in our replication results. These include:

1. Computation of Charges. Stepniewska-Dziubinska et al. (2017) have used the
Chimera (Pettersen et al., 2004) toolkit to compute the partial charges for the pro-
tein pockets. In our replication approach we have chosen to use the OpenBabel
(O’Boyle et al., 2011) toolkit as it is available as a python package and is easier to
integrate into our code. Therefore, a difference in how the two toolkit compute
these charges can also affect the training and prediction results of our version of
the Pafnucy model.

2. Machine Learning Library. In our replication model we have used the PyTorch
ML library (Paszke et al., 2019) instead of the TensorFlow (Abadi et al., 2015) li-
brary used by Stepniewska-Dziubinska et al. (2017).

3.3 | Dataset
The PDBBind dataset (Liu et al., 2017b) includes records of experimentally measured
binding affinity data for biomolecular complexes taken from the Protein Data Bank
(PDB) (Berman et al., 2003) using only the original references directly (Liu et al., 2017a).
The first version of the PDBbind was released way back in 2004 and has since then
been updated on a yearly basis. The PDBbind dataset includes four types molecular
complexes including protein-ligand complexes, nucleic acid-ligand complexes, protein-
protein complexes, and protein-nucleic acid complexes. For the purposes of this study
only the protein-ligand complexes are relevant for use in drug design and the devel-
opment of the scoring function. An overview of how the dataset evolved since it was
taken over by the Shanghai Institute of Organic Chemistry is highlighted in Figure 3.2

75

Chapter 3. Methodology 3.3. Dataset

(Liu et al., 2017a). Over the years, a number of publications were released covering the
PDBbind dataset (Li et al., 2014a,b; Liu et al., 2015, 2017a), and is regarded as a golden
dataset for the development of scoring functions (Liu et al., 2017a). The PDBbind is
compiled based on the contents available from Protein Data Bank (PDB) as at the first
week of the year.

Figure 3.2: Number of protein-ligand complexes included in the PDBBind Dataset
over the years maintained by the Shanghai Institute of Organic Chemistry, showing
steady improvements in the dataset. The dataset is accessible from http://www.
pdbbind-cn.org.

The PDBbind v2016 dataset is used for training, validation, and testing of the devel-
oped scoring functions primarily as a means to evaluate our models with other research
that use the same dataset version. However, our models are also trained and tested
against PDBBind v2018 in order to facilitate comparison of our models with future work.
The PDBbind dataset is composed of two main components:

� The General and Refined Sets. These sets contain different groups of protein-
ligand complexes. Each ligand file is available in mol2 and sdf format variants,
whilst the protein files are available in mol2 and pdb formats.

� Index Files. A set of INDEX files document the details of each PL complex. INDEX
files refer to each complex name with a PDB Code which is the same as the protein
structure name (example 3ZZF). For each complex the files contain details of the
ligand name, release year, resolution, and binding affinity data.

The protein-ligand complexes are grouped into different sets and are illustrated in
Figure 3.3, whilst Table 3.1 provides a summary of the group sizes. The PDBbind dataset

76

http://www.pdbbind-cn.org
http://www.pdbbind-cn.org

Chapter 3. Methodology 3.3. Dataset

consists of the following groups:

1. The General Set. The general sets represents all the available protein-ligand com-
plexes available in the database.

2. The Refined Set. The refined set is a subset of the general set as shown in Fig-
ure 3.3. The refined set was constructed after quality controls on structural resolu-
tion and experimental precision of the binding data measurement.

3. The Core Set. This set in reality is not considered as part of the PDBbind dataset.
The core set was established as part of the Comparative Assessment of Scoring
Functions (CASF) benchmark and was created as a separate study by the same
authors (Li et al., 2018; Su et al., 2018) and is not a direct input in the PDBbind
dataset. The CASF benchmark is meant to provide an objective platform to assess
scoring functions, using high-quality protein-ligand complexes selected from the
refined set, through a systematic, non-rendundant sampling procedure. To filter
the complexes the refined set was clustered using a protein sequence similarity al-
gorithm where each cluster must have at least 90% similarity. Five complexes from
each cluster were then selected including those with lowest and highest binding
affinty (Su et al., 2018). These high-quality complexes are used as the primary
test set in the CASF benchmark and were labeled as the PDBbind core set by the
authors. The core set is not updated on an annual basis as this requires different
preparation, and evaluations from the actual PDBbind dataset. The CASF bench-
mark is discussed in detail in Section 2.3.1. The most recent core sets include the
Core Set v2013 (Li et al., 2018), and the Core Set v2016 (Su et al., 2018). The core set
v2016 will be used as the main test set for this dissertation as this provides a way
to evaluate LigityScore with other research such as Stepniewska-Dziubinska et al.
(2017) and Jiménez et al. (2018), and also with other models that are evaluated as
part of the CASF benchmark. For comparative reasons the core v2013 set will be
also be used for testing as was used by Stepniewska-Dziubinska et al. (2017) and
Zheng et al Zheng et al. (2019).

A summary of the PDBBind dataset is listed in Table 3.1 as provided by Liu et al.
(2017b).

The PDBbind dataset includes experimentally validated binding affinity values in
terms of a dissociation (Kd), inhibition (Ki) or half-concentration (IC50) constant for all
types of biomolecular complexes. These are different experimental measures which de-
fine how strongly a ligand binds to a protein. It is a common approach when training

77

Chapter 3. Methodology 3.3. Dataset

PDB Version Total Files General Set Refined Set Core2016 Set Core2013 Set

2016 13,308 9,246 3,689 285 195*
2018 16,151 11,657 4,121 285 195**

* 107 complexes overlap the Core2016 set, whilst 83 are from the Refined Set and 5 from the General Set.
* 107 complexes overlap the Core2016 set, whilst 76 are from the Refined Set and 12 from the General Set.

Table 3.1: PDBBind summary showing total number of available protein-ligand com-
plexes. The Core Set is defined as part of the Su et al. (2018), and are a subgroup of the
Refined Set in PBDbindLiu et al. (2017b).

Figure 3.3: PDBBind venn-diagram showing the general, refined and cores sets, together
with how these were split up for training, validation and training. The validation set is
made up of 1,000 complexes from the refined set, whilst the core sets are the test sets.
The remaining complexes are used for training. N represents the count of protein-ligand
complexes in each set.

ML models on binding affinity values that no distinction is made between Kd, Ki, and
IC50. These constants are also converted into a negative log as shown in Equation 3.1.

pKa = −log10Kx (3.1)

where Kx can be Ki, Kd or IC50, and pKa is the binding affinity. This approach was
taken by various researchers such as Stepniewska-Dziubinska et al. (2017) and Jiménez
et al. (2018), and is also the approach used in this dissertation.

3.3.1 | Handling Incorrect Molecule Files
Some of the molecular files in the dataset do not load correctly within RDKit, which
means that they would have to be excluded from training. The errors are generated due
to incorrect mapping of atomic bonds that are not possible. RDKit flags these incorrect

78

Chapter 3. Methodology 3.3. Dataset

mappings and treats the molecule as invalid. The ligand files generate most of the errors
with 1,603 invalid ligand molecules for the PDBbind v2016, and 1,839 for the PDBbind
v2018. On the other hand the protein files only had 22 invalid files for PDBbind v2016
and 44 for PDBbind v2018. In order to fix the ligand molecular files the following steps
are taken:

1. The format that gave least errors was the .mol2 format. Therefore the first ap-
proach was to try to load these molecules in .mol2 format.

2. If mol2 loading is not successful, the .sdf format is then tried. The sdf ligand file is
also part of PDBbind.

3. If the sdf file is also not successful, the ligand file is fetched from Pymol. The fetch
utility in PyMol (DeLano, 2002) downloads the molecule directly from the PDB
repository.

4. If the Pymol fetch is unsuccessful, the complex is discarded.

5. The fetched molecule is checked to verify it can be loaded. If not, complex is
discarded.

The molecules that were fixed or discarded from the dataset using the above men-
tioned procedure are detailed in Table 3.2. The total usable complexes are also listed
after removing the total discarded complexes. The ’No Files’ column indicated the
molecules that were listed in the INDEX files but did not have corresponding molec-
ular files.

PDB
Ver

Total
Mol

No
Files

mol2
error

sdf
fix

sdf
pymol

discard usable
General

Set
Refined

Set
Core

Set

2016 13,308 25 1,603 1,142 289 172 13,111 9065 3763 283
2018 16,151 25 1,839 1,317 315 207 15,919 11446 4188 285

Table 3.2: PDBbind summary showing the total number of complexes available, how
many molecular files were absent, errors obtained when loading mol2 files in RDkit, the
errors fixed using the sdf format, and also the errors fixes using pymol. The total usable
complexes are listed after discarding absent and error molecules, and are categorised by
PDBbind set.

79

Chapter 3. Methodology 3.4. Pre-Processing Module

3.4 | Pre-Processing Module
The preprocessing module highlighted in Figure 3.1 is used to process, extract and clean
the required information from the PDBbind dataset. The following aspects are tackled
in the pdb-file-preprocess.py script of the preprocessing module.

� Creation of PDBbind DataFrame. A Pandas DataFrame is built to collect details of
each individual protein in the PDBBind dataset. The column features include the
protein and ligand labels, release year, experimental binding affinity, the file paths
corresponding to the molecular files, and the PDBBind set (general, refined, core)
of the respective protein-ligand complex. The label of the protein is also used as
the PDBCode to identify the record. Additional fields are added to this PDBBind
DataFrame by other modules such as:

◦ The dataset split script (pdb-split-dataset.py) adds a feature to mark if
the PL complex should be in the train, validation, or test sets.

◦ The PL complex representation (pdb-LigFeatures.py) adds the LigityScore
features for each PDBCode.

◦ The prediction components (pdb-predictions.py) adds the predicted bind-
ing affinity for each PDBCode.

� Validation that the listed molecular files are available. As listed in Table 3.2 there
are 25 protein-ligand complexes that are included in the PDBBind INDEX files but
do not have corresponding molecular files. These complexes are excluded from
the dataset.

� Fix molecular files that cannot be loaded using RDKit. Molecules that cannot be
loaded using RDKit are fixed in this module as is described in 3.3.1.

� Validation of compiled dataset. This consists of other generic steps to make sure
there are no errors in the data, such as checks for any duplicate PDB Codes, and
checks for any missing values.

Preprocessing of the molecular files such as removal of water molecule, addition of
hydrogens, and computation of charges, is not required for the LigityScore methods.
The PDBBind protein pocket files do not include any water molecules. Therefore, these
molecular processing steps are not included in this module. It is important to highlight
that at this stage the actual molecular feature representation is not yet available since this
is created in subsequent steps. Therefore, additional pre-processing steps are performed

80

Chapter 3. Methodology 3.4. Pre-Processing Module

at later stages on the actual feature representation of the complex before being input to
the CNN.

3.4.1 | Dataset Split
The PDBbind DataFrame is split into four sets. These four sets and their relationship with
the PDBbind sets are illustrated in Figure 3.3. A validation set was selected to evaluate
the training progress after each epoch, and select the CNN model with the smallest error
to be used for the binding affinity predictions. The validation set was also used for Early
Stopping functionality in the training module so that training is stopped after a num-
ber of epochs with no loss improvements. The validation set contains 1,000 randomly
chosen complexes from the refined set. These are chosen entirely from the refined set,
as these provide higher quality protein-ligand complexes and are more reliable for the
development of scoring functions (Liu et al., 2017a). This approach was also taken by a
number of researchers including Stepniewska-Dziubinska et al. (2017) and Zheng et al.
(2019).

Each of the core sets (2013 and 2016) were used entirely as the two test set. Each
protein-ligand complex in these sets does not belong to either the training or validation
sets, to simulate new and unseen protein-ligand complexes during the prediction stage.
For the validation set, 1,000 protein-ligand complexes were randomly selected as was
done in the work of Stepniewska-Dziubinska et al. (2017), Zheng et al. (2019), and Zhang
et al. (2019). The remainder of the protein-ligand complexes were used as the training
set. This includes all the PDBbind general set and the remainder of the refined set, but
excluding complexes that are also part of the Core-2013 set.

Stepniewska-Dziubinska et al. (2017) and Zheng et al. (2019) do not perform any cross
validation whilst training, due to the dataset splitting approach used where the Test set
is bound only to the core set. Testing a scoring function using the core set as a test set is a
common approach to evaluate scoring function, as this is also used to assess the Scoring
Power in the CASF benchmark (Su et al., 2018). Therefore for the same reasons, and for
the fact that the CNN training requires several hours of training, cross validation was
similarly not used in our approach.

The PDBbind dataset includes molecular complexes from a number of protein fami-
lies. In our study, training was not performed on individual families but all the families
were contributing to the same DL model. This generic model approach is common in
ML based SF and is used by a number of researcher Jiménez et al. (2018); Öztürk et al.
(2018); Ragoza et al. (2017); Stepniewska-Dziubinska et al. (2017); Zheng et al. (2019).

81

Chapter 3. Methodology 3.5. PIP Generation

3.5 | PIP Generation
The protein-ligand features representation for the CNN network is split into two phases.
In the first phase the PIPs of each individual protein-ligand complex are extracted to cre-
ate the PIP dataset using all the PDBBind complexes. The algorithm used for PIP genera-
tion is based on the Ligity methodology described in Ebejer et al. (2019) and is detailed in
Figure 3.4. The PIP generation algorithm can be executed using pdb-LigHotspots.py
python script.

As a first step the molecules are optionally filtered against the Lipinski Rule of Five
(Lipinski et al., 1997). These rules are listed in Table 3.3 and define an approach that
suggests whether or not the molecule is likely to be poorly absorbed. When the molec-
ular properties exceed the listed thresholds, the molecule is regarded as non drug-like
as it can lead to poor absorption in the body. The distribution of the ligands in PDBBind
prior to the Lipinski filtering is shown in Figure 3.5. The filtering of the dataset based on
Lipinski rules is an optional paramater for the PIP generation script, and is used as one
of the experiments described in Section 3.8 to determine if the "drug-likeness" property
of molecules affects the SF prediction ability.

Molecular Property
Lipinski’s

Property Threshold

Molecular Weight (MolW) 500
logP 5
Hydrogen Bond Donors 5
Hydrogen Bond Acceptors 10

Table 3.3: Lipinski Rule of Five used to filter drug-like molecules. Molecules with prop-
erties larger than these threshold are considered non drug-like.

The PIPs are then extracted from the query protein-ligand complex using the open-
source cheminformatics package RDKit BuildFeatureFactory class (Landrum, 2020). The
BuildFeatureFactory uses SMARTS patterns to identify these pharmacophoric features
within the molecule that include hydrophobic, acceptor, donor, cation, anion, and aro-
matic family-type features. SMARTS is a type of language, similar to regex for molecules,
that describes molecular patterns and is used to search for substructures within the
molecule such as aromatic or hydrophobic structures. Each BuildFeatureFactory stores
a number of properties of the feature including the family, atoms, and coordinates of the
particular feature which are then used to filter and identify the suitable PIPs to include
in the dataset.

82

Figure 3.4: PDBbind dataset Hot-Spots or PIP generation algorithm.

Chapter 3. Methodology 3.5. PIP Generation

Figure 3.5: PDBBind molecular properties distributions including (a) Hydrogen Bond
Acceptors, (b) Hyrdogen Bond donors, (c) logP and (d) molecular weight.

These PIPs, of both the protein and ligand, are then filtered by a set of rules con-
straining feature family-pairs at a specific distance threshold as indicated by Ebejer
et al. (2019) so as to capture only the stronger interactions between the protein’s and
ligand’s pharmacophoric features. For an acceptor-donor PIP pair to be included in the
PIP dataset, the hydrogen bond acceptor feature in the ligand requires a corresponding
hydrogen bond donor at the protein side, or vice-versa, that has a distance which is less
than 4.5Å. The allowed feature family pairs and their corresponding distance threshold
are listed in Table 3.4. It is important to note that only these molecular interactions are
used to build the PIP dataset. The euclidean distances between the features are calcu-
lated using the centre of the atoms making up the feature. For example in an aromatic
PIP, only the centre of the atomic structure is considered. Figure 3.6 shows an example
of the PIPs for the 3ZZF target and the NLD ligand, where each PIP is represented by a
seperate mesh. In order to extract all conformant PIPs from the protein-ligand complex
a cartesian product of all PIPs from the protein and ligand is performed, followed by
the filtering of the allowed family pairs, and further filtering by the maximum distances
allowed. PIP interactions are illustrated in Figure 3.7 showing the calculated distances

84

Chapter 3. Methodology 3.5. PIP Generation

Figure 3.6: Examples of PIPs on the 3ZZF target with NLD ligand. Each coloured mesh
represents a different PIP pharmacophore family type. For example the blue mesh rep-
resents Donor atoms, whilst the red mesh represent Acceptor atoms

between centres of PIPs.

In our approach we have also considered using larger distance thresholds than those
stated in Table 3.4. The pdb-LigHotspots.py program provides a threshold-factor ar-
gument that can be used to multiply this baseline distance. As an example a threshold-
factor of 1.5 would increase the maximum distance by half. A number of experiments
were carried out using various distance threshold-factors between 1.0 and 1.6 in or-
der to capture additional PIP interactions in our feature representation. This additional
information includes also other weaker interactions, since the protein and ligand fea-
tures are further apart and thus have a weaker charge attraction, which leads to a more
information rich representation of the protein-ligand complex. Considering a larger
distance threshold factor implies that more PIPs are selected which in turn leads to a
larger number of combinations that would be considered during the feature genera-
tion process. Therefore, this contributes to a more information rich representation of
the protein-ligand complex. The idea of using larger distance threshold factors was
motivated from the work of Zheng et al. (2019) where they showed that long-range in-
teractions outside the 20 angstrom range, termed non-local electrostatic interactions are
also important for the protein-ligand binding. To capture all the interactions between

85

Chapter 3. Methodology 3.6. Protein-Ligand Complex Representation

protein-ligand complexes Zheng et al. (2019) divide all the 3D space of the binding site
into a number of shells or zones, and count the number of different element to element
interactions within each shell. To prove their results, Zheng et al. (2019) compared the
loss of the model when a particular shell is removed to the loss of the best perform-
ing model. Their results show that these non-local interactions have significant impact
on the loss of their model and claim their contribution is important for binding affinity
prediction. Our experiment using different distance threshold-factors are discussed in
Section 3.8, whilst the next section tackles the second phase of the LigityScore protein-
ligand feature representation process.

Interacting Protein-Ligand
PIP Family Pairs Distance Threshold (Å)

hydrophobic, hydrophobic 4.5
acceptor, donor 3.9

cation, anion 4.0
aromatic, aromatic 4.5

cation, aromatic 4.0

Table 3.4: Pharmacophoric Features and Distance thresholds used to build the PIP
dataset reproduced from Ebejer et al. (2019).

3.6 | Protein-Ligand Complex Representation
The second phase of the protein-ligand complex representation uses the PIP dataset de-
scribed in the previous section to create a feature matrix, or a feature cube collection
for every complex for LigityScore1D or LigityScore3D respectively. The algorithm used
to generate these features is illustrated in detail in Figure 3.8. The LigityScore methods
were inspired from the Ligity Ebejer et al. (2019) method mainly due to its rotationally
invariant nature. LigityScore has four main differences from the Ligity implementation:

1. LigityScore uses PIPs from both the protein and ligand sides for feature genera-
tion, to capture additional information from the 3D protein structure.

2. LigityScore considers PIPs that are further apart since these interactions have also
a significant contribution to binding affinity prediction models as demonstrated
by Zheng et al. (2019).

3. LigityScore is a scoring function for binding affinity prediction function, whereas
Ligity is a virtual screening technique.

86

Chapter 3. Methodology 3.6. Protein-Ligand Complex Representation

Figure 3.7: PIP pair interaction between a donor protein PIPs (blue mesh), and an ac-
ceptor ligand PIP (red mesh). The ligand acceptor interactions with all the protein PIPs
are considered during PIP generation however only two are shown here for better visu-
alisation. For each interaction the distance between the centres of the PIPs is calculated.

4. LigityScore uses a CNN to automatically extract features and perform binding
affinity prediction instead of similarity based methods.

Both LigityScore methods use the same algorithm using the pdb-LigFeatures.py

python script, however there are some slight differences in the two approaches and
therefore they are described in the next sections separately. Through the LigityScore
models we have generated the required protein-ligand representation for use with CNNs
and thus achieved the objective outlined in Section 1.3.

3.6.1 | LigityScore1D
Each feature matrix is calculated using the PIPs from the PIP-dataset related to the par-
ticular protein-ligand complex. The PIPs for the ligand side and those of the protein
side are extracted to obtain two seperate sets — the ligand PIP set, and the protein PIP
set.

The feature matrix is constructed by considering all the possible combinations when
choosing one PIP from the ligand-PIP set, and one PIP from the protein-PIP set. The
distance between each combination is discretised using 1Å resolutions. These PIP com-

87

Figure 3.8: Algorithm used for the Feature Generation Process for LigityScore1D and
LigityScore3D.

Chapter 3. Methodology 3.6. Protein-Ligand Complex Representation

Figure 3.9: LigityScore1D Feature Matrix Generation. A protein-PIP set and a ligand-
PIP set are extracted from a PL complex. From each PIP combination taken from the PIP
pool, the family pair, and their discrete distance are used to update the binning count in
the feature matrix. The rows of the feature matrix represents the allowed family-pairs,
whilst the columns represent the discrete spaces available to bin the PIP combination
distance.

89

Chapter 3. Methodology 3.6. Protein-Ligand Complex Representation

binations also represents a particular PIP family set (example Acceptor-Donor). Each
PIP family pair represents a different row in the feature matrix. Therefore the PIP-family
pair is used to index the row of the feature matrix, whilst the discretised distance is used
to index the column of the PIP. These coordinates in the feature matrix are then used to
increment the bin count of that location. This process is illustrated in Figure 3.9. In this
example an Acceptor ligand-PIP is selected, whilst a Donor protein-PIP is selected from
the protein-PIP set. A distance of 3.7Å is discretised to position 4. In this dummy exam-
ple the Acceptor-Donor family pair represents row 1. Therefore in this example location
(1,4) is incremented by 1. If the discrete distance exceeds the allowed max distance the
PIP combination is discarded. The feature matrix is initialised to all 0’s. All the possible
combinations are iterated so that each PIP pair distance increments the bin position in
the feature matrix space.

The rules in Table 3.4 defined in Ebejer et al. (2019) allow six possible PIP families.
This corresponds to a total of 21 possible family-family combinations when selecting
two families from six with replacement. A total of 21 possible discrete locations are
available when considering a maximum distance of 20Å, and a 1Å resolution. Therefore
each feature matrix has a size of (21× 21). Each PIP family combination corresponds to
a row vector that represents the discrete distribution from a single distance of the 2-PIP
combination, and hence the name LigityScore1D was chosen for this representation.

3.6.2 | LigityScore3D
The method used LigityScore3D is similar to LigityScore1D but is more complex as it
considers a combinations of 3-PIPs at a time. The 3-PIP combination creates a triangular
structure amongst the PIP as shown in Figure 3.10 a generates a set of three distances.
The three distances are discretised as is done in LigityScore1D approach to extract a
binning coordinate in 3D space. The voxel, or bin at this location is incremented by
one. Additionally, in this case the 3-PIP family combination represents a unique feature
cube. Taking three out of six families with replacement creates a total of 56 possible
3-family set combinations. The unique family set combination is used to index the par-
ticular feature cube in the feature cube collection to update the binning count using the
coordinates from the discrete distances. Considering the example in Figure 3.10, one
ligand PIP and two protein are considered. These generate a PIP-family combination of
Acceptor-Acceptor-Donor, so the Acceptor-Acceptor-Donor will be updated at the (10, 8, 3)
voxel location.

Considering a maximum distance of 20Å in each dimension, each feature cube has a
dimension of (21× 21× 21). Since each 3-PIP family set has its own feature cube, 56

90

Chapter 3. Methodology 3.6. Protein-Ligand Complex Representation

Figure 3.10: LigityScore3D Feature Cube Collection Generation. A protein-PIP set and
a ligand-PIP set are extracted from a PL complex. From each 3-PIP combination taken
from the PIP pool, the family set, and their discrete distances are used to update the
binning count in the feature cube. A feature cube is built for every available family-set.
Choosing 2 protein-PIPs and 1 ligand-PIP, and choosing 2 ligand-PIPs and 1 ligand-PIP
combinations are both evaluated when compiling the feature cube collection.

91

Chapter 3. Methodology 3.6. Protein-Ligand Complex Representation

features cubes are stacked together to create a protein-ligand LigityScore3D representa-
tion of size (1176× 21× 21). In order to ensure that the correct binning coordinates are
selected the following measures are taken:

� Family Set Ordering. The families of the 3-PIP combinations are ordered by the
first two family names so that a unique family sequence is created. These se-
quences are stored in a python dictionary with a corresponding index. There-
fore all 3-PIP combinations considered can only belong to one of the 56 family
sequences, each corresponding to a particular index. This is also illustrated in
Figure 3.10 (PIP Family Combination).

� Binning Coordinates. When a particular PIP family is repeated two or three times
for a particular 3-PIP combination (example Acceptor-Acceptor-Donor, or Donor-
Donor-Donor), there can be the situation where the same distance-pairs within the
triangular structure correspond to a different binning coordinate. In order to avoid
this situation, the binning coordinates are calculated by ordering both the family-
pairs and their distances at the same time. This concept is illustrated in Figure 3.11.

Figure 3.11: LigityScore3D 3-PIP binning coordinates. In order to extract the correct
binning coordinates, both the families pairs and their corresponding distances are used
to sort the distance. This ensures that the same binning coordinates are used for the
same structure. Although the structure are a mirror of each other, they still update the
same binning coordinate (4,8,10).

As indicated by Figure 3.10, the PIP distances are calculated by using combinations
across both the ligand-PIPs and the protein-PIPs. In LigityScore3D, a combination a

92

Chapter 3. Methodology 3.7. Convolutional Neural Network Implementation

3-PIP is considered at a time. All the possible combinations using two PIPs for the pro-
tein, and one PIP from the ligand, plus the combinations where two ligand-PIPs and
one protein-PIP are considered. This contrasts with the approach used in Ebejer et al.
(2019) where only the ligand-PIP pool was considered to take 3-PIP and 4-PIP combina-
tions. Our hypothesis is that since the protein is essential for SBVS, considering also the
protein-PIP in the feature generations strengthens our model for feature representation
for development of the SF.

3.7 | Convolutional Neural Network Implementation
The architecture used for LigityScore is a deep convolutional neural network with a
single regression output neuron used for prediction of binding affinity. The CNN ar-
chitecture used for both LigityScore1D and LigityScore3D are illustrated in Figure 3.12
and 3.13. The dimensions at each layers are also highlighted. The model automatically
extracts patterns from the protein-ligand representation and encodes these patterns in
the weights of the model. The patterns extracted should differentiate the spatial infor-
mation between different complexes captures from the PIP interactions. A python pack-
age "sbvscnn" was developed to configure and build the CNN network. The package
provides a dynamic way to construct different CNN architectures using a number of
input parameters such as the number on convolution layers, if maxpooling, normalisa-
tion, and dropout are implemented at each layer, number and dimensions of the fully
connected layers. Table 3.5 includes a complete list of parameters used to define our
CNN implementation, highlighting also an example of the expected values.

As described in previous sections the input for LigityScore1D is (21× 21), whilst the
input for LigtyScore3D is (98 × 98 × 54). These inputs are treated as 2D and 3D ten-
sors respectively, and our approach treats them similar to a greyscale and colour image
respectively. This analogy to an image stems from the fact that the protein-ligand com-
plex representation includes a matrix of integer values representing counts of spatial
distances across different pharmacophoric family pairs which are very similar to an im-
age matrix. This analogy allowed us to explore and use image processing techniques to
optimise the scoring function model. Data augmentation using rotations of the "image",
and normalisation at the convolution layers (Ulyanov et al., 2017) are both techniques
that are used in image processing and are also used in our experiments to verify if they
can improve the prediction of the ligityScore SF.

The network consists of two components namely the convolutional block, and the
fully connected block. The model shown in Figure 3.12 for LigityScore1D has three con-

93

Chapter 3. Methodology 3.7. Convolutional Neural Network Implementation

Figure 3.12: CNN Architecture for LigityScore1D. The feature representation is directly
input to the network with 4 convolutional layers with instance normalisation, RELU
activation, and spatial dropout applied in each layer. The output of the last convolution
layers is flattened to input to a fully connected network with 3 hidden layers. The output
is a single neuron predicting the binding affinity.

Figure 3.13: CNN Architecture for LigityScore3D. The input is reshaped to (98× 98×
54). Four convolutional layers are applied each layer enabled for instance normalisa-
tion, RELU activation, and spatial dropout. The output of the last convolution layers is
flattened to input to a fully connected network with 4 hidden layers. The output is a
single neuron predicting the binding affinity.

94

Chapter 3. Methodology 3.7. Convolutional Neural Network Implementation

volutional layers with filter dimensions 64, 128, 256, whilst the model for LigityScore3D
in Figure 3.13 has four convolutional layers with filter dimensions of 64, 128, 256, and
512, which are all randomly initialised. The PyTorch conv2D module was used in both
cases for each of the convolutional blocks. A convolutional kernel size of 5x5 was used,
with a padding of two in order to keep the output size the same as the input after convo-
lution. Each convolution layer included instance normalisation, RELU activation, and
convolutional dropout components, which is then followed by a maxpooling layer with
a patch of two to reduces the dimensions by half. The output of the last convolution lay-
ers is flattened to be used as input to four fully connected layers. LigityScore1D had a
dimension of (3× 3× 256) at the FC layers whilst LigityScore3D had an (5× 5× 2× 512).
To cater for the difference in inputs the fully connected layers were assigned dimensions
of (2000, 1000, 500, 200) and (6000, 2000, 1000, 200) respectively.

All the weights of network layers are initialised with the Pytorch defaults. The lay-
ers are therefore initialised using the random uniform distribution using the Kaiming
method presented in He et al. (2015). This initialising method is well suited for use with
the RELU activation function as this method keeps the standard deviation of the layer’s
activation close to 1. Correctly initialising the weights of the network is important for
the training of deep neural networks as this prevents the output of the activation layers
from exploding or vanishing, which would produce an insignificant output.

Stochastic gradient descent with the Adam optimisation (Kingma and Ba, 2014) is
used with default parameters for momentum scheduling (β1 = 0.99, β2 = 0.999) to
train the network with a learning rate of 10−5. Adam optimisation was also used by
Jiménez et al. (2018) and Stepniewska-Dziubinska et al. (2017). Various batch sizes were
used for training ranging from mini-batch sizes of 5 to 25. The datasets are shuffled and
split into mini-batch is order to speed up the training process. These mini-batches allow
the network to converge faster by making fewer adjustments (Mishkin et al., 2017). A
number of experiments were done to explore different architectures and optimise these
parameters. These experiments are described in Section 3.8 whilst Table 3.5 provides a
summary of all the parameters used in the network.

A custom PyTorch Dataset and Dataloader class is used to prepare the data for input
to the CNN. These classes are used to load, preprocess and augement the data, and
create a mini-batch for the input to the CNN. The following preprocessing and data
augmentation techniques are implemented:

� Scaling. The Min-Max scaling function of Equation 3.2 is used to scale the input

95

Table 3.5: Summary of parameters used for CNN models for LigityScore1D and Ligi-
tyScore3D that are available in the sbvscnn python package with a brief descriptions
for each parameter.

Model Parameter
Parameter
Example

Parameter Description

Convolution Module conv2D Pytorch Module used.
Input Channels 3 Input depth dimension (Cin).
Convolution Layers 3 Number of Convolution Layers.
Convolution Filter Dimensions 64, 128, 256 Filter depth at each layer.
Convolution Kernel Size 5× 5 Filter windowing size.
Convolution Stride 1 Steps moved during convolution.
Convolution Padding 2 Padding applied before convolution.
Normalisation Function batchnorm batchnorm or instance norm options.

Normalisation Layer Activation [1, 1, 0]

Boolean List to indicate where
batchnorm is applied.
Length equal to number of
conv layers.

Convolution Dropout Activation [1, 0, 0]
Boolean List to indicate presence
of spatial dropout.

Convolution Dropout Probability [0.1, 0, 0]
Spatial Dropout probability
to configure at each layer.

Max-Pooling Layer Activation [1, 1, 1]
Boolean List to indicate where
pooling is applied. Length
equal to number of Conv layers.

Max-Pooling Kernel Size 2 Patch size used for pooling
Max-Pooling Stride 2 Steps move at a timein
Max-Pooling Padding 0 Padding applied before pooling

FC Layers 4
Number of fully connected layers,
incl. output.

FC Dimensions [4000, 512, 128, 1] Size of each FC layers

Activation Function RELU
Activation func used across
all layers.

Activation Function Activation [1, 1, 1, 1] Boolean List for RELU layer activation
FC Dropout Activation [1, 1, 1, 0] Boolean List for dropout activation.
FC Dropout Probability [0.5, 0.5, 0.5, 0] Dropout probability at each layer.

Batch Size 5 Mini-batch Size.
Epochs 200 Training epochs.

Learning Rate 10−5 Learning Rate used in Pytorch
Optimiser.

L2 Regularization Decay 10−3 λ parameter for L2 regularisation.

Training Rotations 4
Allowed values 1, 4 or 8
for LigityScore1D.
1, 6 allowed for LigityScore3D.

Weight Initialisation 0 boolean enable custom weights.

Chapter 3. Methodology 3.7. Convolutional Neural Network Implementation

between 0 and 1.

Xs =
X− Xmin

Xmax − Xmin
(3.2)

where, X is the input element to scale, Xmin is the minimum value in the matrix,
whilst Xmax is the maximum value in the matrix. Xs represents the scaled output
element.

� Reshaping. In the case of LigityScore3D, the feature representation has a dimen-
sion of (1176 × 2 × 21). This is reshaped to (94 × 94 × 54) in an effort to have
uniform dimension sizes at the input of the CNN. In this case, using the analogy
of a coloured image, the image has input dimension of 94 × 94 with 54 colour
channels. No reshaping was done for LigityScore1D.

� Rotation. Rotations were used for data augmentation of the dataset. Rotated fea-
ture matrices are used to present a different view of the same protein-ligand rep-
resentation at the input of the CNN. This is used in our experiments to verify if
more input data can improve the generalisation ability of the model. The inputs to
the CNN must have a consistent input dimensions, so the rotated matrix be of the
same size as the original matrix. A slightly different approach was used to handle
rotations for LigityScore1D and LigityScore3D:

◦ LigityScore1D has the option of four or eight rotations where the feature ma-
trix is rotated by 90◦ and 45◦ angles respectively. The feature matrix has as a
square input dimension, however the length and width of the matrix increase
when rotated by 45◦. To avoid discarding any elements in the matrix at the
edges, the matrix is pre-padded so that when it is rotated it can accommo-
date all of the feature elements. Ninety degree angles do not have this issue
and the feature matrix remains of the same size. Rotations at 90◦ showed im-
proved generalisation results and showed an increase in performance of this
scoring function.

◦ LigityScore3D has the option to rotate the 3D matrix by 90◦ along any of the
planes about the 3 axis. Since the feature representation has a cuboid shape,
six possible rotated views are available across all the planes. Four rotation
are allowed across the x-axis plane, while an additional rotation is achieved
across the other two planes.

Early Stopping is an optional parameter for the CNN training module and can be
used to stop training when the validation errors loss does not improve over a number

97

Chapter 3. Methodology 3.8. Experiments

of epochs. A minimum number of epochs can be configured so that tracking of the
performance of the loss only starts after this minimum number of epochs are complete.
If early stopping is not enabled, the epoch with the smallest RMSE value is chosen as
the best epoch.

Apart from Early Stopping, a number of techniques are also used to prevent the CNN
network from overfitting. These include L2 regularisation in the loss function, dropout
at the fully connected layers, spatial dropout for the convolutional layers, data aug-
mentation using new protein-ligand complexes from more recent PDBbind versions,
artificial data augmentation through rotations, minimizing the complexity of the neural
network, and also by introducing batch normalisation that can also have a regularisation
effect (Mishkin et al., 2017). The experiments related to these techniques are described
in Section 3.8.

3.8 | Experiments
Figure 3.14 provides the high level workflow used to carry out a number of experiments
to develop the LigityScore SF. After replicating the work in Pafnucy using our own
code, as described earlier in Section 4.2, the first implementation of LigityScore was
carried out. The LigityScore1D PL representation was tackled first as it is a simpler
approach than LigityScore3D. As indicated in Figure 3.14 a series of initial experiments
were carried out to get a valid result from the model. Once a valid result was obtained a
series of additional experiments were done using a two pronged approach, inline with
the objectives presented in Section 1.3. These include:

� CNN Model Optimisation. In this aspect, different parameters of the network
were tested to find the parameter set that maximised the prediction results both in
terms of computations speed and in prediction performance. These experiments
are highlighted in Section 3.8.2. After trying a number of options with no tangible
improvements, a second wave of experiments is triggered focusing on changing
the molecular representation. The experiments were evaluated by comparing the
results obtained for the predictions of the validation and test sets using the R, SD,
and RMSE metrics detailed in evaluation criteria of Section 2.3.

� Molecular Representation Optimisation. In this second aspect the objective was
to change the data used to represent the protein-ligand complex in order to find a
better representation that encodes as much as possible information of the protein-

98

Chapter 3. Methodology 3.8. Experiments

Figure 3.14: High Level experiment workflow to provide an overview on the approach
taken to implement different experiments to develop the LigityScore scoring function.

99

Chapter 3. Methodology 3.8. Experiments

ligand complex, so that this new information can then be harvested by the CNN
network. These experiments are highlighted in Section 3.8.1.

After performing a number of minor changes to the representation used as input to
CNN such as changing the allowed max distance during feature generation, or chang-
ing the PIP generation distance threshold factor, a major change was implemented that
lead to the development of LigityScore3D. LigityScore3D as detailed in Section 3.8.1 is
more complex and required additional methods for feature extraction. Some of the ex-
periments carried out on LigityScore1D were re-implemented to reassess their impact
on the new model. The following sections summarise the experiments done for these
two approaches on both LigityScore1D and LigityScore3D.

3.8.1 | Molecular Representation Optimisation
The following experiments were done to optimise the LigityScore protein-ligand com-
plex representation. The results for these experiments are provided in Chapter 4.3.

� LigityScore Dimension. This represents major changes in the feature generation
module as described in the previous sections. Since the LigityScore3D is a more
complex model that includes more detailed spatial information on the PIP inter-
actions it was used to validate if this additional information could achieve better
results.

� PIP Generation Threshold Factor. The recent work of Zheng et al. (2019) has
showed that intermolecular interactions further away from the binding site are
still important. The authors used these long range interactions to create their
OnionNet descriptors to achieve superior results than the Pafnucy (Stepniewska-
Dziubinska et al., 2017) model. Inspired by this, we have tried to capture ad-
ditional interactions by using larger PIP distance thresholds. The PIP distance
thresholds as defined by Ebejer et al. (2019) are listed in Table 3.4. To achieve
this we have conducted a number of experiments where these thresholds were in-
creased by a factor given as an argument to the PIP generation module. In these
experiments, various factors were considered ranging between 1.0 (representing
thresholds used in Ebejer et al. (2019)) to 1.6. Although the PIP distance threshold
were increased the maximum distance allowed between PIP combinations was left
to 20Å.

Increasing the PIP distance threshold implies that more PIPs are extracted from the
protein-ligand complexes. This leads to a higher number of PIP combinations to

100

Chapter 3. Methodology 3.8. Experiments

generate the feature matrix for LigityScore. Each variation in PIP distance thresh-
old requires the re-generation of the PIPs, followed by the feature representation
generation for both LigityScore1D and LigityScore3D.

� Max distance allowed in Feature representation. In line with the above, the max-
imum distance allowed between combinations of PIPs during the ’feature genera-
tion’ process is increased. The feature generation scripts are re-run using different
maximum distance thresholds. Maximum distance of 30Å and 40Å were tested
for LigityScore1D keeping the discretisation resolution of the distance to 1Å.

� Lipinski Rules of 5. In this experiment we have used the Linpinski rule of Five
(Table 3.3) to determine if drug-like molecules can achieve better performance.
The filtering of PDBbind molecules based on these rules is implemented as part of
the PIP generation module.

� Data Augmentation. LigityScore was trained using the PDBbind v2016 and v2018
in order to determine if the model can learn and generalise better when there are
more protein-ligand complexes available for training. As shown in Figure 3.2 there
are considerable additional complexes in the more recent versions, so the aim of
this experiment was to determine if additional training data leads to better predic-
tion performance.

Apart from data augmentation through the addition of more real protein-ligand
complexes for training, artificial data augmentation was also used during the
CNN training by providing different rotations of the feature matrix as was de-
scribed in Section 3.7. The LigityScore descriptors are rotationally invariant, how-
ever rotations were included in the experiments to test if they improve the gener-
alisation ability of the model. Both data augmentation techniques were tested to
determine if they lead to better affinity prediction results .

3.8.2 | CNN Hyperparameter Tuning
The following list describes the parameters relating to the CNN architecture that were
tested to optimise the binding affinity prediction of LigityScore. The CNN architecture
used in Pafnucy was used as a baseline for the parameter optimisation. The Tensorboard
toolkit from the TensorFlow platform was used for visualising how various metrics such
training loss, validation loss, and also R of the training and validation sets, change as
training progresses.

101

Chapter 3. Methodology 3.8. Experiments

� PyTorch Convolution Module. The conv2D and conv3D modules were evalu-
ated. The conv2D module expects a 4D tensor as input. The 4D tensor represents,
the batch size, number of input channels, width and height. LigityScore1D was
trained using the conv2D module and therefore the 4D input tensor for a batch
size of 20 was (20× 1× 21× 21). LigityScore1D has only one input channel and is
analogous to a greyscale image.

The conv3D module expects a 5D tensor as input with batch size, number of input
channels, width, height, and depth. LigityScore3D was tested using both Pytorch
conv2D, and conv3D modules. The conv3D module has an input dimension of
(20× 1× 54× 98× 98), representing a 3D input with only one channel. On the
other hand the conv2D modules has an input dimension of (20 × 54 × 98 × 98)
which is analogous to a colour images with 54 colour channels. These experiments
were carried out in order to determine if the convolution module used, has any
impact on the prediction performance. The conv3D model has substantial more
training parameters which results in additional compute and GPU resources, and
training time.

� Convolution Layers. A number of experiments were performed to test CNN ar-
chitectures with different number, and sizes of convolution layers. Additional
convolutional computations were added so that multiple convolutions with the
same filter depth are performed at the each stage. The VGG16 (Simonyan and Zis-
serman, 2014) model is also tested in our approach. These tests were motivated
from the series of breakthroughs achieved by deep networks in image classifica-
tion (He et al., 2016; Simonyan and Zisserman, 2014).

� Convolution Filters. Convolution kernel sizes of (3× 3) and (5× 5) were tested as
they are amongst the most popular and are used to achieve state of the art results
in image classification in Simonyan and Zisserman (2014) and Szegedy et al. (2015)
respectively. The input at each layer has a padding of 1 or 2 respectively so that
the output of the convolution layer does not change in size. A stride of 1 was
maintained throughout all experiments.

� Normalisation. Batch normalisation (batchnorm) or instance normalisation (in-
stancenorm) apply a normalisation layer after each convolution operation so that
the inputs of each layer in the network is also normalised. These normalisation
techniques are presented in detail in Section 2.2.2. Batchnorm applies a normal-
ising function across all the weights together at a particular layer, whilst instan-
cenorm applies normalisation for each individual weight channel. As reported by

102

Chapter 3. Methodology 3.8. Experiments

(Mishkin et al., 2017) batch normalisation can increase the stability of the network
as it acts as a regularisation function and helps solve the exploding/vainishing
gradient problem. These experiments were performed to determine if batchnorm
or instancenorm can increase the generalisation ability of the network, and also if
they can improve speed of convergence of the network. Although batchnorm can
be applied before or after the activation functions (Mishkin et al., 2017), in our
approach it is applied before the activation function, as was done in Ioffe and
Szegedy (2015) when using the RELU activation function.

� Pooling. Pooling affects the size at the input of the fully connected layers. Experi-
ments were performed to determine if it is beneficial to disable pooling at particu-
lar layers to vary the inputs at the fully connected layers and test if this effects the
prediction performance. Max pooling was used for all experiments with pooling
patch size of 2, to reduce the size of its input by half.

� Dropout. In this experiment various dropout probabilities, ranging between 0.5 to
0.8 are tested, to determine the affect on generalisation performance and hence it
effect on prediction performance. Dropout is applied at the fully connected layers
where a number of activations are dropped or zeroed during the training phase
with a probability pdrop that can be input as a parameter in our model.

� Spatial Dropout. Since it is a common approach to use dropout to prevent over-
fitting in fully connected layers, this test explores if dropout at the convolution
layers, known as spatial dropout, can have a similar effect. Spatial dropout is for-
mulated by Tompson et al. (2015) and considers the spatial location of the features.
Instead of dropping activations randomly, spatial dropout drops the activation of
a entire convolution filter or feature map as described by Tompson et al. (2015).

� Batch Size. Mini-batch sizes ranging between 5 and 25 samples were tested to find
the best trade-off between model computational performance and generalisation
ability. Larger mini-batch sizes increase the performance of the CNN since less
updates are done on the model, however this might have a degradation in predic-
tion performance. Additionally extremely low mini-batch sizes might not provide
any gain in prediction preformance but could significantly slow down training
(Mishkin et al., 2017).

� Fully Connected Layers and Dimensions. The fully connected layer is used to
process extracted features from the convolution layer, and predict the binding

103

Chapter 3. Methodology 3.8. Experiments

affinity. In this experiments we test different number of layers and size and eval-
uate their effect on model performance.

3.8.3 | Implementation Details
In this section we highlight details on the software packages and hardware used to
generate the results of this research project. This project was supported by Amazon Web
Services (AWS) through their "AWS Cloud Credits for Research" program (aws, 2020)
who awarded us 4,500 US dollars after successful submission of our proposal for this
study. Therefore, all our experiments were conducted on AWS EC2 instances. In order to
optimise the costs, different EC2 instances were used to handle different workloads. The
feature extraction and representation processes are more heavy on memory but do not
require any hardware acceleration. On the other hand all the CNN model training and
predictions were run on hardware accelerated GPU machines. The list below provides
a summary of the instances used. Each instance was running Ubuntu 16.04 as part of
the AWS deep learning amazon machine image (AMI).

� R5 Instance. The R5 instances were used for PIP generation and the Feature gen-
eration algorithms. These are memory optimised instances that have a higher
memory-to-cpu ratios than general compute instances. The R5 instances are based
on the Intel Xeon Platinum 8000 series processors with a core frequency of 3.1
GHz. The "r5.large" instance with 16GB of RAM and 2vCPU was used for the
LigityScore1D, whilst the "r5.2xlarge" with 64GB and 8vCPU was used for Ligi-
tyScore3D. In the latter case the (1176× 21× 21) numpy array initialed using the
int16 data type for each protein-ligand complex uses considerable memory. All
generated datasets were constructed using the pandas data structures and saved
to disk using the DataFrame.to_pickle module to serialize the DataFrame object to
a file. These IO disk processes requires additional memory utilisation for correct
loading or saving of the datasets. For these reasons R5 instances were selected.

� G4 Instance. The G4 instances are GPU based machines that are equipped with
Intel Xeon processors and Nvidia T4 Tensor Core GPUs dedicated which is dedi-
cated to the instance. The T4 GPU has 320 Turing Tensor cores, 2,560 CUDA cores,
and 16GB of memory. The "g4dn.2xlarge" instance with 8vCPU and 32GB RAM
was used to train and test LigityScore1D. On the other hand the "g4dn.4xlarge"
with 16vCPU and 64GB RAM, and "g4dn.8xlarge" 32vCPU with 128GB RAM were
used to train and test LigityScore3D, depending on the complexity of the CNN ar-
chitecture used. The choice of G4 instance size was primarily based on the RAM

104

Chapter 3. Methodology 3.9. Summary

requirements, since all of the mentioned instance have one T4 GPU with 16GB of
RAM.

All the development of the LigityScore modules were done using Python 3.6 using an
Ubuntu 18.04 machine. Table 3.6 provides a summary of the python packages used for
development of LigityScore.

Table 3.6: Summary of Python 3.6 packages used with versions with short description
where each module is utilised.

Python Package Name Package Version Usage Summary

RDKit 2019.09.3

Used for pre-processing and filtering
based on Lipinski Rule of 5.
Used for PIP Generation and
Feature Generation.

PyMOL 2.3.5
Usine in pre-processing to fix
molecules with RDKit errors.

pandas 1.0.3
Dataset Generation.
Used in all modules.

NumPy 1.18.1
Dataset Generation.
Used in all modules.

PyTorch 1.4.0 CNN Training and Predictions

TensorBoard 2.1.0
CNN loss, RMSE, and R
metric monitoring.

OpenCV 3.4.2
Rotations for artificial
data augmentation

scikit-learn 0.22.1
Used for linear regression
to find SD performance metric.

seaborn 0.10.0 Used for statistical plots.

3.9 | Summary
In this Chapter we have presented a detailed description for LigityScore implemen-
tation including all the modules developed that were required to meet the objectives
of this research project. At its core, LigityScore uses the PIP generation (Section 3.5)
and Feature Generation (Section 3.6) algorithms modified from Ebejer et al. (2019) to
be used as an input to the CNN where they include PIP combinations from both the
ligand and protein PIP pools, using different PIP distance threshold to extract our own
protein-ligand representations. This representation can be used to train a CNN network
to predict the protein-ligand binding affinity. A detailed analysis of the datasets used,

105

Chapter 3. Methodology 3.9. Summary

and the CNN architecture implemented were also presented. We have also described
the experiment workflow process that was followed to generate the results required to
answer the research question hypotesised in this study.

In the following chapter, we present and discuss the results generated from the exper-
iments described here and outline the best performing model.

106

4

Results & Evaluation

In this chapter we will review the experiments executed to test and optimise the per-
formance of LigityScore in line with the aims and objectives of this study. This study
aims to find a suitable representation of the protein-ligand complex that can leverage
the ability of the CNN architecture to extract representative features automatically from
the protein-ligand complex, and use them for binding affinity prediction. The following
experiments were carried out using the methodology described in Section 3.8.

� Baseline implementations based on the work of Pafnucy (Stepniewska-Dziubinska
et al., 2017) to create a benchmark model of the scoring function for comparison
and evaluation of LigityScore.

� Evaluate the suitability and effectiveness of the LigityScore protein-ligand repre-
sentation for use as a scoring function for SBVS. We created two different represen-
tations in this study, namely LigityScore1D and LigityScore3D, and each approach
was tested separately due to differences in the data representation. We performed
several experiments to optimise these representations and determine if different
LigityScore feature generation parameters can create a representation that encodes
more details of the protein-ligand structure that provides a better signal to noise
ratio.

� Evaluate different CNN architectures to find the best model for use with the data
representation presented by LigityScore.

� Optimisation of the CNN hyperparameters to obtain the best binding affinity pre-
dictor.

� All the experiments were evaluated using the CASF-2013 and CASF-2016 test sets
using the Pearson correlation coefficient, R, and the standard deviation in linear

107

Chapter 4. Results & Evaluation 4.1. Pafnucy Replication Results

regression, SD, as these metrics are standard practice when measuring the perfor-
mance of scoring functions for binding affinity predictions.

LigityScore, as a scoring function, depends on two main elements. The data represen-
tation of the protein-ligand complex, and the underlying CNN architecture for feature
extraction and affinity prediction. Therefore the experiments detailed in this chapter
aim to enhance these two elements of LigityScore.

4.1 | Pafnucy Replication Results
Our own implementation of the Pafnucy model achieved R values of 0.718, 0.690, 0.761
for the training, validation, and CASF2016 sets respectively, whilst Stepniewska-Dziubinska
et al. (2017) achieved 0.77, 0.72, 0.78. Our results show a slight difference that can be at-
tributed to a number of factors that are divergent from the original Pa f nucy model.
These include:

� PyTorch. Stepniewska-Dziubinska et al. (2017) build their CNN using Tensor-
Flow, whilst our models are built using the Pytorch framework as it is preferred
tool for development of LigityScore for its ease of use, simplicity, and pythonic
framework. Differences in the implementation of the CNN modules might have
contributed to this change.

� Partial Charge Calculations. The Pafnucy model uses the partial charge of the
atoms in its representation. The partial charges in Pafnucy were calculated using
the Chimera software package (Pettersen et al., 2004), whilst our method uses Py-
bel (O’Boyle et al., 2011) as this was better suited for our pre-processing modules
based on Python. As was discussed by Zheng et al. (2019), such features are prone
to introduce additional estimations that can lead to extra noise or bias. The partial
charge calculation is one such features and their calculation varies across differ-
ent software packages and therefore might have also effected the difference in our
results. The partial charge feature is an important component in the Pafnucy rep-
resentation and was ranked the 6th most influential features out of the 19 used.

� The 1,000 protein-ligand complexes of the validation set are randomly selected
from the PDBbind Refined set. These complexes were not listed in the work of
Stepniewska-Dziubinska et al. (2017) and therefore our approach also took 1,000
random samples from the refined set. The different selection of validation, and
hence training set, can also have an effect on the difference in results. This was also

108

Chapter 4. Results & Evaluation 4.2. Baseline Results

experienced in our approach and the standard deviation for 10 different validation
and training sets are presented in Table 4.5.

Therefore, the results 0.718, 0.690, 0.761 for the training, validation, and CASF2016
sets respectively, confirm that our implementation provides similar results to those pub-
lished by Stepniewska-Dziubinska et al. (2017). Some of the modules used to build our
implementation of Pafnucy, such as preprocessing module and the CNN training and
prediction modules, are used also for the development of LigityScore. The replication
results confirm the correct functionality of these modules, whilst also validating that we
have a good baseline to develop our scoring function models.

The work involved in replicating Pafnucy was also used for pedagogical purposes so
that we can learn the model specifics and determine the exact procedures carried out in
Pafnucy implementation. Equipped with such knowledge on the Pafnucy implementa-
tion, it enabled us to make a like with like comparison of the LigityScore and Pafnucy
implementations during evaluation. Pafnucy was successfully implemented using our
own code achieving one of the objectives outlined in Section 1.3.

4.2 | Baseline Results
In order to compare the change in performance when modifying CNN parameters a
baseline CNN model was established using the parameters used by the Pafnucy model.
Table 4.1 lists the baseline parameters used for LigityScore1D for PDBbind v2016 and
PDBbind v2018 datasets, and LigityScore3D for the PDBbind v2016 dataset. The PDB-
bind v2018 was used as a data augmentation experiment as it includes an additional
2,843 protein-ligand complexes that were added to the training set. The baseline results
together with the results of the various experiments are listed in Table 4.2 and Table 4.3
discussed in detail in Section 4.3. As was described in Section 3.3 the CASF-2013 and
CASF-2016 were used for testing.

The Pearson correlation coefficients that were computed for the training and valida-
tion sets for LigityScore1D baseline are depicted in Figure 4.1. On the other hand Fig-
ure 4.2 show the RMSE of the training and validation sets evaluated at each epoch. The
validation set includes 1,000 protein-ligand complexes that are not included in either
training or test sets.

The validation set is used to test the performance of the model to evaluate if the model
is overfitting. As can be seen from Figure 4.2 the training RMSE continues to decrease
as more epochs are computed. Therefore the model is continuously learning the un-
derlying protein-ligand feature maps. However, the validation RMSE does not follow

109

Table 4.1: Baseline parameters used for CNN models for LigityScore1D and Ligi-
tyScore3D used to initialise our sbvscnnmsc dynamic CNN python module. Any
changes to the CNN or data model parameters are compared to this baseline.

Model Parameter
LigityScore1D

v2016
LigityScore1D

v2018
LigityScore3D

Convolution Parameters

Convolution Module conv2D conv2D conv2D
Input Channels 1 1 54
Convolution Layers 3 3 3
Convolution Filter Channels (64, 128, 256) (64, 128, 256) (64, 128, 256, 512)
Convolution Kernel Size 5× 5 5× 5 5× 5
Convolution Stride 1 1 1
Convolution Padding 2 2 1
Activation Function ReLU ReLU ReLU
Normalisation Layer Activation - - -
Normalisation Function - - -
Convolution Dropout Activation - - -
Convolution Dropout Probability - - -

Pooling Parameters

Max-Pooling Layer Activation all conv layers all conv layers all conv layers
Max-Pooling Kernel Size 2 2 2
Max-Pooling Stride 2 2 2
Max-Pooling Padding 0 0 0

Fully Connected Parameters

FC Layers 4 4 4

FC Dimensions (1000, 500, 200, 1) (1000, 500, 200, 1)
(6000, 2000, 500,

200, 1)
Activation Function ReLU ReLU ReLU
FC Dropout Activation (1, 1, 1, 0) (1, 1, 1, 0) (1, 1, 1, 1, 0)
FC Dropout Probability (0.5, 0.5, 0.5, 0) (0.5, 0.5, 0.5, 0) (0.5, 0.5, 0.5, 0.5, 0)

Optimisation Parameters

Batch Size 20 20 20
Epochs 140 140 60
Learning Rate 0.00001 0.001 0.00001
L2 Regularization Decay 0.001 0.001 0.001
Training Rotations 1 1 1
Weight Initialisation Kaiming Kaiming Kaiming

Data Model Parameters

Rotations 1 1 1
PIP Generation Threshold Factor 1.0 1.0 1.0
Feature Generation Max Distance 20Å 20Å 20Å
Feature Generation Resolution 1.0 1.0 1.0

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

this pattern, and is stable for a number of epochs, and then starts increasing again. This
is a sign of overfitting (after epoch 115) since the model has learned a complex repre-
sentation which does not generalise well for the unseen validation samples. In these
experiments the epoch that yields the lowest RMSE for the validation set is taken as the
best performing epoch, and is used to predict the binding affinity of the CASF-2013 and
the CASF-2016 test sets.

The baselines R and RMSE plots for LigityScore1D (2018) and LigityScore3D baseline
are similar to those presented for the LigityScore1D (2016) baseline in Figure 4.1 and 4.2.

Figure 4.1: LigityScore 1D Baseline R-Score Performance. Model is trained for 140 epoch
and the R-score value for the Validation set (orange line) saturates after around 100
epoch, achieving a performance of 0.59.

4.3 | LigityScore Results and Discussion
The next sections presents the results for LigityScore1D and LigityScore3D for vari-
ous experiments performed on changes in CNN architecture and the data model of the
protein-ligand representation.

111

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Figure 4.2: LigityScore 1D Baseline RMSE Performance. The RMSE decreases gradually
for the first 80 epochs, stabilises for a number of epoch, and starts increasing again after
115 epochs showing signs of overfitting.

4.3.1 | LigityScore1D

LigtyScore1D (v2016 and v2018) results are presented in Tables 4.2 and 4.3 showing per-
formance results in terms of RMSE, and R values. Different parameters in the baseline
model were changed to evaluate its impact. The parameters changed from the baseline
model are indicated in the "Exp Shorthand" column of Tables 4.2 and 4.3 for quick refer-
ence, however more descriptive details of the experiments are provided in Table C.1.

For the Pafnucy model the best results were obtained when the weights for the convo-
lutional and fully-connected layers were randomly initialized using a truncated normal
distribution with zero mean and standard deviation of 0.001. Using the same type of
weight initialisation led to instability in our model and consequently opted to used the
Kaiming method recommended by He et al. (2015) for DL models with ReLU activation.
After using the Kaiming method we managed to produce the first meaningful results
using the LigityScore representation. Therefore one of the primary objectives to find a
suitable representation of the PL complex was reached. The next major objective was to
provide the best network architecture that provides the best affinity score predictions.
Therefore our next approach was to take measures to increase the generalisation aspect

112

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

of the trained model, and optimise the CNN for LigityScore input features.
A similar test execution was followed for both 2016 and 2018 datasets used in Ligi-

tyScore1D. The first series of experiments (Exp# 1 to 18) were done to search for the best
CNN hyperparameters. Different mini-batch sizes (25, 15, 10, and 5) and kernel size of
3× 3 were tested however these did not show any significant improvement.

Rotations of the LigityScore representation were added for data augmentation dur-
ing training. Rotations increased the training time as four or eight different rotated
LigityScore representions for each PL complex were trained at each epoch. Rotations in-
crease the input size from 21× 21 to 37× 37 in order to avoid clipping any values of the
representation. Therefore an additional convolution layer plus pooling was added for
these tests to reduce the size of the final convolution layer, and have a suitable input size
to the FC network. The Fully Connected layers contain the majority of the parameters of
the CNN network. The baseline model contains a total of approximately 3.9M learnable
parameters, out of which 74% are used to train the Fully Connected layers. The smaller
number of learnable parameters at the convolution layers is attributed to the sparse in-
teractions introduced earlier in Section 2.2.2.2. Therefore, to reduce the number of learn-
able parameters, memory utilisation, and overfitting, it is important to provide an input
to the FC layer that is not large. Apart from increasing the training time, the rotations
have made the performance of the model worse. The rotated representations contain
the same information as LigityScore uses rotationally invariant descriptors, explaining
why they did not show improvement in prediction performance.

Increasing the dropout at the FC layers, and increasing the regularisation factor in
the ADAM optimizer also did not show improvements in results. For this reason these
parameters were not changed from the baseline in other experiments.

113

Table 4.2: Performance of LigityScore 1D trained on PDBbind v2016. The best results are recorded for Exp #37 (ID 137)
highlighted in green. An R value of 0.695 and 0.725 were recorded for CASF2013 and CASF-2016 respectively. Experiment
details are listed in Appendix C Table C.1. The RMSEtr, RMSEv, RMSE2013, and RMSE2016 represents the RMSE for training,
validation, CASF-2013, and CASF-2016 sets respectively, whilst Rtr, Rv, R2013, and R2016 represent the Pearson correlation for
the training, validation, CASF-2013, and CASF-2016 sets.

Exp# ExpID ExpShorthand time RMSEtr Rtr RMSEv Rv RMSE2016 R2016 RMSE2013 R2013

0 100 Baseline 68.88 1.387 0.668 1.575 0.587 1.709 0.626 1.955 0.545

1 101 mini-batch 25 66.64 1.383 0.673 1.581 0.588 1.769 0.612 1.999 0.534
2 102 mini-batch 15 72.75 1.438 0.630 1.574 0.592 1.731 0.622 1.945 0.524
3 103 mini-batch 10 81.57 1.277 0.717 1.548 0.592 1.703 0.609 1.871 0.546
4 104 mini-batch 5 96.88 1.383 0.629 1.521 0.582 1.702 0.593 1.877 0.497
5 105 kernel 3× 3 68.26 1.669 0.444 1.695 0.507 1.880 0.518 2.304 0.410

6 106 4 Rotations, 512 Conv layer 211.41 1.359 0.685 1.584 0.583 1.762 0.570 2.233 0.441
7 107 8 Rotations, 512 Conv layer 351.39 1.389 0.663 1.590 0.583 1.779 0.563 2.089 0.452
8 108 LR 0.00005 71.61 1.537 0.570 1.596 0.579 1.768 0.584 2.008 0.477
9 109 LR 0.0001 69.93 1.513 0.597 1.603 0.576 1.767 0.593 2.070 0.451

10 110 BatchNorm (BN) 71.31 1.376 0.682 1.583 0.585 1.758 0.593 1.957 0.497

11 111 InstanceNorm (IN) 72.99 1.355 0.697 1.563 0.599 1.749 0.603 1.985 0.518
12 112 Dropout 0.6 0.6 0.5 70.97 1.407 0.659 1.575 0.593 1.708 0.614 1.936 0.535
13 113 Dropout 0.8 0.8 0.5 71.62 1.437 0.638 1.579 0.587 1.728 0.613 1.987 0.516
14 114 L2 Reg 0.002 71.33 1.475 0.617 1.579 0.589 1.711 0.616 1.980 0.507
15 115 L2 Reg 0.004 71.65 1.426 0.642 1.573 0.590 1.729 0.602 2.005 0.503

16 116 FC dim - 512, 256, 64 70.97 1.379 0.673 1.579 0.586 1.695 0.609 2.216 0.516
17 117 FC dim - 500, 200 70.92 1.353 0.689 1.562 0.593 1.738 0.592 2.073 0.512
18 118 FC dim - 1024, 512, 256, 64 72.90 1.360 0.684 1.575 0.585 1.756 0.587 2.243 0.514
19 119 PIP Threshold 1.1 71.28 1.224 0.755 1.524 0.620 1.704 0.617 1.834 0.589
20 120 PIP Threshold 1.25 72.08 1.211 0.761 1.453 0.661 1.565 0.695 1.885 0.629

21 121 PIP Threshold 1.4 72.27 1.001 0.847 1.431 0.693 1.588 0.684 2.130 0.571
22 122 PIP Threshold 1.5 72.64 1.204 0.761 1.480 0.659 1.599 0.686 1.920 0.576
23 123 PIP Threshold 1.6 72.96 1.248 0.743 1.467 0.663 1.613 0.695 1.864 0.604
24 124 PIP Threshold 1.4 w/Lipinski 38.36 1.364 0.677 1.484 0.601 1.761 0.643 1.744 0.600
25 125 PIP Threshold 1.4 w/Max dist 30 76.84 1.077 0.819 1.433 0.696 1.577 0.684 1.990 0.575

26 126 PIP Threshold 1.4 w/Max dist 40 78.40 1.494 0.593 1.551 0.624 1.764 0.597 1.940 0.574
27 127 PIP Threshold 1.4 w/resolution0.5 78.28 1.522 0.573 1.586 0.604 1.775 0.597 1.910 0.579
28 128 BN–1-4 71.82 1.118 0.810 1.477 0.678 1.664 0.670 2.114 0.610

(continued. . .)

Exp# ExpID details time RMSEtr Rtr RMSEv Rv RMSE2016 R2016 RMSE2013 R2013

29 129 IN—1-4 73.71 1.086 0.814 1.444 0.691 1.614 0.681 1.998 0.659
30 130 IN–1-4–Drop0-8 74.11 0.850 0.892 1.458 0.690 1.571 0.694 2.024 0.628

31 131 IN–1-25 74.32 0.378 0.981 1.461 0.664 1.653 0.640 1.957 0.633
32 132 IN–1-4–minibatch15 78.17 0.358 0.983 1.438 0.691 1.557 0.710 1.844 0.669
33 133 IN–1-4–r4 142.58 0.442 0.979 1.440 0.689 1.660 0.645 1.808 0.645
34 134 IN–1-4–r8 220.99 0.402 0.980 1.462 0.680 1.619 0.664 1.916 0.657
35 135 IN-1-4–Cdrop0-1-all 75.92 1.146 0.786 1.485 0.684 1.564 0.707 2.083 0.636

36 136 IN–1-4–Cdrop0-2-all 76.21 0.957 0.865 1.545 0.683 1.561 0.718 2.048 0.649
37 137 IN–1-4–Cdrop0-1-mid 76.36 0.361 0.985 1.467 0.690 1.490 0.725 1.793 0.695
38 138 IN–1-4–Cdrop0-1-mid–BS15 78.27 0.326 0.985 1.475 0.685 1.558 0.710 1.831 0.665
39 139 IN–1-4–Cdrop0-2-mid 77.12 0.408 0.98 1.502 0.685 1.489 0.726 1.873 0.681
40 140 IN–1-4–Cdrop0-1-all-r4 145.94 0.514 0.96 1.439 0.709 1.539 0.697 1.885 0.629

41 141 IN–1-4–Cdrop0-1-all-r8 226.47 0.637 0.941 1.456 0.695 1.498 0.730 1.860 0.679
42 142 BN–1-4–Cdrop0-1-mid 71.41 0.383 0.979 1.464 0.704 1.534 0.711 1.894 0.660
43 143 IN–1-4–Cdrop0-1-mid–d0.8 73.32 0.479 0.972 1.473 0.685 1.522 0.712 1.948 0.653
44 144 IN–1-4–Cdrop0-1-mid–d0.8–r4 138.93 0.507 0.972 1.420 0.702 1.555 0.705 1.794 0.656
45 145 IN–1-4–Cdrop0-1-mid–4ConvL 76.38 0.300 0.987 1.496 0.670 1.576 0.696 1.775 0.710

46 146 IN–1-4–Cdrop0-1-mid–5ConvL 103.45 0.347 0.982 1.489 0.678 1.631 0.663 1.972 0.651
47 147 IN–1-4–Cdrop0-1-mid–3Convx2 96.90 0.340 0.985 1.458 0.690 1.531 0.706 2.023 0.629
48 148 IN–1-4–Cdrop0-1-mid–4Convx2 151.41 0.320 0.986 1.419 0.706 1.516 0.709 1.742 0.673
49 149 IN–1-4–Cdrop0-1-mid–VGG16 248.43 0.348 0.983 1.427 0.707 1.573 0.698 1.732 0.643

Table 4.3: Performance of LigityScore1D trained on PDBbind v2018. The best results are recorded for Exp #36 (ID 150) high-
lighted in green. An R value of 0.662 and 0.733 were recorded for CASF2013 and CASF-2016. Experiment details are listed in
Appendix C Table C.1. The RMSEtr, RMSEv, RMSE2013, and RMSE2016 represents the RMSE for training, validation, CASF-2013,
and CASF-2016 sets respectively, whilst Rtr, Rv, R2013, and R2016 represent the Pearson correlation for the training, validation,
CASF-2013, and CASF-2016 sets.

Exp# ExpID ExpShorthand time RMSEtr Rtr RMSEv Rv RMSE2016 R2016 RMSE2013 R2013

0 100 baseline 90.32 1.252 0.736 1.628 0.556 1.808 0.544 2.086 0.424

1 101 mini-batch 25 88.52 1.501 0.577 1.632 0.543 1.935 0.553 2.190 0.434
2 102 mini-batch 15 95.57 1.414 0.635 1.631 0.553 1.824 0.556 2.055 0.466
3 103 mini-batch 10 106.44 1.523 0.545 1.631 0.534 1.826 0.522 2.050 0.444
4 104 mini-batch 5 126.09 1.510 0.526 1.567 0.550 1.810 0.504 1.961 0.434
5 105 kernel 3× 3 85.86 1.501 0.574 1.647 0.533 1.804 0.541 2.142 0.474

6 106 4 Rotations, 512 Conv layer 260.23 1.646 0.458 1.718 0.484 1.897 0.501 2.140 0.363
7 107 8 Rotations, 512 Conv layer 432.62 1.700 0.403 1.755 0.436 1.845 0.525 2.137 0.393
8 108 LR 0.00005 93.52 1.457 0.608 1.613 0.561 1.769 0.574 2.041 0.472
9 109 LR 0.0001 90.24 1.853 n/a 1.947 n/a 2.174 n/a 2.428 n/a

10 110 BatchNorm (BN) 91.94 1.447 0.636 1.644 0.548 1.839 0.537 2.221 0.423

11 111 InstanceNorm (IN) 94.19 1.289 0.799 1.700 0.531 1.861 0.557 2.118 0.441
12 114 L2 Reg 0.002 92.00 1.519 0.566 1.652 0.534 1.865 0.515 2.157 0.373
13 115 L2 Reg 0.004 92.41 1.414 0.655 1.644 0.540 1.869 0.506 2.193 0.370
14 116 FC dim - 512, 256, 64 91.34 1.364 0.675 1.615 0.561 1.828 0.545 2.221 0.409
15 117 FC dim - 500, 200 91.41 1.457 0.612 1.596 0.575 1.795 0.561 2.203 0.424

16 118 FC dim - 1024, 512, 256, 64 93.78 1.704 0.384 1.808 0.410 1.955 0.491 2.163 0.403
17 119 PIP Threshold 1.1 90.34 1.087 0.815 1.540 0.609 1.753 0.570 2.169 0.512
18 120 PIP Threshold 1.25 91.28 1.306 0.709 1.492 0.641 1.671 0.653 1.939 0.580
19 121 PIP Threshold 1.4 91.63 1.401 0.668 1.467 0.644 1.609 0.699 1.969 0.598
20 122 PIP Threshold 1.5 92.12 1.328 0.689 1.478 0.659 1.635 0.674 2.184 0.564

21 123 PIP Threshold 1.6 92.29 1.214 0.763 1.449 0.660 1.548 0.709 1.947 0.591
22 124 PIP Threshold 1.4 w/Lipinski 47.88 1.387 0.663 1.451 0.601 1.784 0.622 1.838 0.527
23 125 PIP Threshold 1.4 w/Max dist 30 95.27 1.299 0.721 1.437 0.661 1.668 0.664 2.119 0.610
24 126 PIP Threshold 1.4 w/Max dist 40 98.70 1.332 0.701 1.460 0.646 1.675 0.648 1.974 0.591
25 127 PIP Threshold 1.4 w/resolution0.5 98.83 1.358 0.681 1.474 0.641 1.725 0.623 1.929 0.549

26 128 BN–1-4 106.61 0.352 0.983 1.416 0.687 1.546 0.710 1.824 0.638
27 129 IN–1-4 106.55 1.256 0.751 1.507 0.664 1.627 0.702 1.983 0.624
28 130 IN–1-4–Drop0-8 107.33 2.317 0.890 2.549 0.627 2.710 0.693 2.837 0.634

(continued. . .)

Exp# ExpID details time RMSEtr Rtr RMSEv Rv RMSE2016 R2016 RMSE2013 R2013

29 132 IN–1-4–BS15 113.10 1.163 0.785 1.429 0.676 1.642 0.681 1.952 0.586
30 133 IN–1-4–r4 202.54 1.522 0.927 1.910 0.652 2.064 0.672 2.178 0.607

31 134 IN–1-4–r8 314.29 1.334 0.914 1.730 0.613 1.965 0.579 2.183 0.548
32 135 IN–1-4–Cdrop0-1-all 110.19 1.088 0.820 1.418 0.679 1.539 0.719 1.887 0.635
33 136 IN–1-4–Cdrop0-2-all 110.07 0.470 0.967 1.413 0.694 1.510 0.715 1.939 0.651
34 137 IN–1-4–Cdrop0-1-mid 110.42 1.438 0.667 1.533 0.656 1.791 0.646 2.053 0.601
35 139 IN–1-4–Cdrop0-2-mid 111.05 1.111 0.844 1.491 0.676 1.621 0.722 2.027 0.613

36 150 IN–1-6–Cdrop0-1-mid–lr0-0001 107.89 0.790 0.910 1.447 0.676 1.510 0.733 1.777 0.662
37 151 BN–1-4–Cdrop0-1-mid–lr0-0001 109.14 1.056 0.826 1.389 0.689 1.517 0.729 1.921 0.630
38 142 BN–1-4–Cdrop0-1-mid 92.80 1.347 0.683 1.441 0.659 1.611 0.691 1.920 0.607
39 143 IN–1-4–Cdrop0-1-mid–drop0.8 94.79 1.843 0.268 1.908 0.313 2.161 0.296 2.500 0.320
40 144 IN–1-4–Cdrop0-1-mid–drop0.8–r4 175.14 1.843 0.096 1.910 0.187 2.164 0.072 2.539 0.057

41 145 IN–1-4–Cdrop0-1-mid–4ConvLayers 98.72 1.396 0.787 1.620 0.633 1.834 0.679 2.172 0.587
42 146 IN–1-4–Cdrop0-1-mid–5ConvLayers 130.23 1.060 0.903 1.516 0.657 1.805 0.621 2.019 0.608
43 147 IN–1-4–Cdrop0-1-mid–3Convdouble 123.25 1.702 0.389 1.681 0.514 1.926 0.504 2.272 0.499
44 148 IN–1-4–Cdrop0-1-mid–4Convdouble 187.71 1.757 0.415 1.889 0.442 2.108 0.399 2.440 0.379

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Normalisation techniques such as BatchNorm and InstanceNorm were proved to be ef-
fective in optimising the model efficiency. Figure 4.3 and Figure 4.4 illustrate the R-score
and RMSE performance when BatchNorm and InstanceNorm are introduced. These
models (blue and green line plots) show convergence for the training R-score after only
40 epochs. Comparing this to the baseline performance in Figure 4.1 the model is not
seen to converge even at epoch 140. The normalisation models are also compared with
a model trained with a higher learning rate (increased 10-fold). Although this shows
improved convergence time over the baseline it converges around epoch 80. Addition-
ally the validation R-score is significantly less than that of the normalisation models.
Although the normalisation techniques did not improve the prediction ability of the
model, they were still used throughout the rest of the experiments due to significant in-
crease in efficiency. InstanceNorm shows slightly better convergence times and R-score
results for validation. Therefore, it was used as the preferred choice to be used in further
experiments. However, BatchNorm is also tested in other experiments to validate this
assumption (Exp ID 128 and 142).

Figure 4.3: LigityScore1D Baseline-with-BatchNorm and InstanceNorm R-score Perfor-
mance for the Training and Validation sets. The normalisation performance is also com-
pared with a model with a higher learning rate. The training R-score converges after
40 epochs for both InstanceNorm and BatchNorm. In contrast, the baseline shown in
Figure 4.1 does not converge even after 140 epochs.

118

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Figure 4.4: LigityScore1D Baseline-with-BatchNorm and InstanceNorm RMSE Perfor-
mance for Training and Validation sets. Normalisation reduces the loss of the model
more rapidly than with a ten-fold increased learning rate.

After several changes in the CNN parameters a different strategy was adopted to
change the model representation. It seemed that with the baseline data representation
no further learning was possible, and thus a different data representation was required.
A considerable improvement in prediction performance was achieved when different
PIP threshold factors are used. A higher PIP threshold factor implies that pharma-
cophoric HotSpots that are further apart are considered during the LigityScore PIP gener-
ation, as is described in Section 3.5. Figure 4.5 shows the validation R-score performance
as the PIP threshold factor is incremented from the baseline 1.0 to 1.6. The PIP threshold
factor of 1.4 (brown line graph) reaches a validation R-score close to 0.69 recording an
improvement of 19% from the baseline (blue line). The PIP threshold factor of 1.4 clearly
outperforms the baseline and the other models in terms of R-Score for the validation set.

Other changes in data representation were also considered such as increasing the max-
imum distance allowed to generation HotSpots (Exp #25-26), and using 0.5 resolution
for the discritised space of the LigityScore representation (Exp #27). However these did
not show improvements in results and were not considered for further experiments.
Tests using drug-like ligands that conform with the Lipinski rule of five were also im-
plemented, however such filtering also did not show any improvements in the results.

119

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Figure 4.5: Validation Set performance using different PIP thresholds. The R-Score
performance increases as the PIP threshold increases and achieves best results with a
threshold factor of 1.4.

Subsequent tests (Exp #28-40) were done to find if changes using different combi-
nation of CNN parameters can further enhance the model performance. Apart from
instance norm and higher PIP generation threshold factors, spatial dropout was found
to be effective to increase the generalisation of the model and hence its performance.
Positive results were achieved in Exp #37 where the InstanceNorm, PIP threshold factor
of 1.4, and spatial dropout of 0.1 were combined and achieved the best performance
R-score of 0.725 for CASF-2016 and 0.695 for CASF-2013 test sets. Spatial dropout was
applied after the second convolution layers (middle layer with 128 channels) similar to
the usage by it authors in Tompson et al. (2015).

The RMSE and R-Score plot for Exp #37 are illustrated in Figures 4.6 and 4.7. Figure 4.6
shows that the model is not overfitting for the duration of the training. Although the
RMSE error for validation (orange) varies and spikes throughout training, overall it
continues to slowly decrease. In fact the best validation result is achieved at the 139th

epoch. The validation R-score in Figure 4.7 (orange line) also has a very slow increase
throughout training. Therefore, it seems that with the introduction of spatial dropout
in the middle convolution layer, the model was made more resilient to overfitting. The
training loss for the model is illustrated in Figure 4.8.

120

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Figure 4.6: LigityScore1D (v2016) best performing RMSE training and validation plots.
The validation error continued to slowly decrease over the training epoch, which is a
sign that the model is more resilient to overfitting. The least RMSE error was recorded
at epoch 139.

Figure 4.7: LigityScore1D (v2016) best performing R-Score training and validation plots.
The R-Score for validation continues to slowly increase over the training, in line the
decrease in validation RMSE error highlighted in Figure 4.6.

121

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Figure 4.8: LigityScore1D (v2016) best performing training loss computed at 100 mini-
batches intervals over 140 epochs.

The real and predicted binding affinity distributions using the model of Exp #37, for
all datasets are depicted in Figures 4.9 and 4.10 respectively. These two plot highlight
the similarity between the real and predicted results.

Another method to show the similarity of results is through scatter plots for the pre-
dicted affinity, versus the experimental (real) affinity. The ideal model would produce a
plot of function y = x, as the predicted affinity should be equal to the real. This imposes
an underlying linear model, which can be trustly evaluated using Pearson coefficient
since this correlation measure assumes a linear model. The scatter plots for all sets for
the model of Exp #37 are shown in Figure 4.11. The training scatter plot (top-left) shows
a function very close to y = x as it achieved an R-score of 0.985. The bottom scatter plots
represent the Core-2016 (left) and the Core-2013 (right) sets showing good correlation
between predicted and real affinities.

Further tests were done to change the depth of the convolution layers and the number
of channels used in each layers. These experiments include Exp #45-49. Exp #45 uses an
additional 512 convolution layer and also showed some promising results. The model
achieved an R score fo 0.71 for the core-2013 set. This only varies from the chosen best
model by 0.01 which is too small to claim it as a better result. Such small variation are
easily attributed to changes in the model due to random initialisations across parame-

122

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Figure 4.9: PDBBind v2016 experimental binding affinity distribution grouped by Train-
ing, Validation, and Test sets.

Figure 4.10: PDBBind v2016 predicted binding affinity distribution grouped by Train-
ing, Validation, and Test sets, for the best performing LigityScore1D Model (Exp #37).

123

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Figure 4.11: Experiment Vs Predicted Binding Affinity in pKa (negative log of disas-
socation contant, IC50, and inhibition constant) for best LigityScore1D (v2016) model
(Exp #37). The top left plots illustrates the optimal predication rate for the training set.
The top right represented the validation set taken from the refined set. The bottom plot
are the core set v2016 (left), and the core set v2013 (right).

ters of the model, and also difference in training or validation sets. On the other hand the
R-score for core-2016 set is 0.696 (best model 0.725). Additionally the model of Exp #37
was chosen as it is a simpler model with fewer trainable parameters. Exp #46 includes
five convolution layers, whilst Exp #47 and 48 include six and eight layers respectively.
Exp #46 adds the 32-channel convolution filter, whilst Exp #47-48 double the convolu-
tion layer for each channel depth. Finally, the VGG16 (Simonyan and Zisserman, 2014)
architecture was also tested, that was modified to include less pooling layers, due to a
small input, and to include spatial dropout. However, these more complex architectures
did not improve the performance over those achieved in Exp #37.

The v2018 includes approximately 2,700 new protein-ligand complexes over the v2016.
Therefore the v2018 dataset was used to verify if additional data applied during training
would result in better performance. The same approach as that just outlined for v2016 as
although almost the same CNN configuration was used, different datasets might have

124

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

different optimal parameters. The results were presented in Table 4.3. The baseline for
v2018 was the same as v2016 except for the learning rate parameter (Table 4.1). A high
learning rate of 0.001 was used as originally proposed by Kingma and Ba (2014). The
learning rate to 0.00001 led to the problem of vanishing gradients and meaningful re-
sults were only achieved after several epochs, if at all. Therefore, a higher learning rate
was used almost throughout all experiments with PDBbind v2018.

The same increase in performance was also registered when a larger PIP threshold
factor was used. In this scenario the PIP threshold factor of 1.6 achieved the best valida-
tion score with an R value of 0.66. The difference between the validation R-score of PIP
threshold factor 1.4 is only 0.016, and the test set results also show such small difference
in performance (+0.1). Nonetheless the PIP threshold factor of 1.4 was also selected to be
used for further tests, but the threshold factor of 1.6 was also included in some tests. In
line with the results for the v2016, best results were also achieved for the model trained
with InstanceNorm, and spatial dropout of 0.1 after the middle convolution layer, but
with a PIP threshold factor of 1.6. The learning rate was also decreased from 0.001 to
0.0001 as this was causing oscillating changes in the loss of the network.

The additional training data has increased the results for the core-2016 test, but at the
same time reduced the results for the core-2013 set. Therefore we cannot claim a signifi-
cant improvement with the additional training data. The best models for LigityScore1D
v2016 and v2018 were evaluated again over a number of iterations using different vali-
dation and training sets. The results are presented in Section 4.4. The test sets were not
changed from CASF-2013 Li et al. (2014b) and CASF-2016 (Su et al., 2018) in order to
evaluate their performance against these benchmarks.

4.3.2 | LigityScore3D
The LigityScore3D was developed as an enhancement to LigityScore1D where a more
complex 3D representation of the protein-ligand complex is used as was detailed in
Section 3.6. The results obtained for LigityScore3D are presented in Table 4.4, and a
more detailed description on the experiments is provided in Table C.2.

From the results obtained from LigityScore1D, we have decided to use normalisation
(InstanceNorm or BatchNorm) for all experiments, except the baseline, due to the no-
ticeable improvement in performance and training time. We have taken an approach
similar to the previous two sets of experiments reported in Tables 4.2 and 4.3 for Lig-
ityScore1D. In Exp #2 and #3 normalisation is introduced and a clear enhancement in
performance is achieved in this case as well, where the R-score for Core-2016 test set
shows a difference of approximately of 0.11 from the baseline. The enhancement pro-

125

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

vided by BatchNorm and InstanceNorm is very similar and inline with the results of
LigityScore1D, and so we decided to use InstanceNorm as the main normalisation func-
tion. However, BatchNorm is also tested in later tests to validate this assumption such
as experiment Exp #21. All the experiments were run for 60 epochs, apart from the base-
line model which was run for 100 epochs since it takes longer to converge. Exp #31-34
were run for 30 epochs due to the cost of using the Conv3D module, described later on
in this section.

In parallel with LigityScore1D, the increase in performance from the baseline was
obtained by using different PIP threshold factors. Figure 4.12 illustrates the validation
set R-Score performance for Exp #14-18, using different PIP threshold factors from 1.1
to 1.6.

Figure 4.12: Validation Set Performance using different PIP thresholds and Instan-
ceNorm. The R-Score performance increases considerably over the baseline as the PIP
threshold increases. LigityScore3D achieves similar results for threshold factors of 1.4,
1.5, and 1.6.

Figure 4.12 clearly illustrate the enhancement on the validation set R-score over the
baseline for threshold factors greater than 1.1 and achieve an R-score that are close to 0.7.
Experiment #16 shows good results that outperform LigityScore1D with a Core-2016 R-
Score of 0.726, and a surprisingly similar R-Score of 0.725 for Core-2013. Throughout
the literature such as Stepniewska-Dziubinska et al. (2017), Jiménez et al. (2018), lower

126

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

performance was achieved on the Core-2013 set. This is also apparent in most of the
other tests performed in this study. Experiments #17 and #18 also achieved a good
result for Core-2016 and recorded a performance of 0.75 and 0.757 respectively, however
they have lower Core-2013 performance at 0.65 which is similar to the performance of
LigityScore1D. Due to the similarity between the results obtained for both test sets in
Exp #16, further experiments were performed using the PIP threshold factor of 1.4.

Figure 4.13: LigityScore3D (v2016) best performing RMSE training and validation plots.
The validation error continued to slowly decrease over the training epoch, which is a
sign that the model is more resilient to overfitting. The least RMSE error was recorded
at epoch 48.

The next set of experiments builds on the knowledge acquired from LigityScore1D to
enhance the LigityScore3D model using mainly spatial dropout. The best results where
achieved with spatial dropout with a dropout probability of 0.2 on all the convolution
layers and obtained a prediction performance on the Core-2016 R-score of 0.739, and
a Core-2013 R-Score of 0.745. The best performance was achieved in Exp #26 and is
highlighted in green in Table 4.4. This model is the same used in Exp #14 but with
added spatial dropout components.

The additional scoring power results from LigityScore3D comes at the expense of a
more complex network. The LigityScore3D model in Exp #26 has 94M learnable pa-
rameters, whilst the best model for LigityScore1D (Exp #37) has only 3.9M parameters.
This represents a 24 times increase in learnable parameters. This also shows in the train-

127

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

ing time required. LigityScore3D took 133 minutes for 60 epochs, with the best epoch
recorded in epoch 48, whilst LigityScore1D took 76 minutes for 140 epochs with the
best epoch recording in step 139. Therefore, training LigityScore3D is five times slower
than LigityScore1D. The timing reported in the Tables 4.2, 4.3, and 4.4 also include the
evaluation of the model at each epoch for the training and validation sets.

Figure 4.13 shows the RMSE for the training and validation set for Exp #6. Similar
to the results shown in Figure 4.6, Figure 4.13 shows that overall the validation error
continues to gradually decrease during training, showing its resiliency to overfitting.
The best validation error is recorded at epoch 48. Adding additional dropout at the
FC connected layers does not improve the generalisation results as shown in Exp #22,
but rather simply increase the convergence time of the CNN due to slower training.
The scatter plots for the training, validation, and test sets are presented in Figure 4.14
showing strong correlations between the real and predicted binding affinity, confirming
our model can correctly predict the binding affinity for protein ligand complexes.

The LigityScore3D model was also tested using the Conv3d PyTorch module. The
Conv3d module allows training of our model using a 4D tensor of dimension 1× 54×
98× 98, which is essentially the LigityScore3D representation with one input channel.
The previous experiments (Exp #1-30) used the Conv2d PyTorch module using a 3D ten-
sor of size 54× 98× 98 which can be seen as a 2D protein-ligand complex input repre-
sentation with 54 input channels. Experiments #31-34 utilise the Conv3D module using
a combination of parameters that showed an increase in performance. Although these
models do achieve relatively good results, they do no outperform the model in Exp #26.
The Conv3d module further increases the complexity of the model as it requires addi-
tional training parameters due to the additional input tensor. Experiment #33 uses the
same architecture as Exp #26 but uses the Conv3D module, and has a total of approx-
imately 133M learnable parameters, or 42% increase over Exp #26. This model is also
heavy on the compute side where each model’s training took approximately 15 hours to
complete 30 epochs, a drastic increase over the 2.22 hours required to train Exp #26 on
60 epochs.

128

Chapter 4. Results & Evaluation 4.3. LigityScore Results and Discussion

Figure 4.14: Experiment Vs Predicted Binding Affinity in pKa (negative log of disasso-
cation contant, IC50, and inhibition constant) for best LigityScore3D (v2016) model. The
top left plots illustrates the optimal predication rate for the training set. The top right
represented the validation set taken from the refined set. The bottom plot are the core
set v2016 (left), and the core set v2013 (right).

129

Table 4.4: Performance of LigityScore 3D trained on PDBbind v2016. The best results are recorded for Exp #26 (ID 306)
highlighted in green. An R value of 0.739 and 0.745 were recorded for CASF2013 and CASF-2016. Experiment details are
listed in Appendix C Table C.2. Rtr, Rv, R2013, and R2016 represent the Pearson correlation for the training, validation, CASF-
2013, and CASF-2016 respectively.

Exp# ExpID ExpShorthand time RMSEtr Rtr RMSEv Rv RMSE2016 R2016 RMSE2013 R2013

0 300 Baseline 213.18 1.508 0.596 1.657 0.541 1.899 0.515 2.368 0.436

1 301 BatchNorm (BN) 131.21 0.431 0.972 1.562 0.596 1.694 0.631 1.972 0.548
2 302 InstanceNorm (IN) 132.56 0.443 0.970 1.591 0.582 1.721 0.626 1.978 0.515
3 303 IN–mini-batch 25 121.31 0.423 0.972 1.597 0.581 1.751 0.616 1.997 0.571
4 304 IN–mini-batch 15 139.81 0.457 0.97 1.546 0.609 1.702 0.626 1.893 0.591
5 305 IN–mini-batch 10 169.31 0.421 0.972 1.538 0.597 1.728 0.593 1.856 0.545

6 306 IN-no-padding 107.30 0.442 0.972 1.589 0.583 1.730 0.625 1.921 0.526
7 307 IN–rotations6 (r6) 501.37 0.488 0.966 1.602 0.567 1.790 0.571 2.070 0.506
8 308 IN–LR 0.00005 131.17 0.531 0.960 1.575 0.596 1.716 0.609 1.999 0.519
9 309 IN–LR 0.0001 131.36 1.052 0.826 1.631 0.561 1.757 0.594 1.963 0.500

10 310 IN–Dropout 0.8 0.8 0.5 131.59 1.148 0.960 1.925 0.572 2.115 0.606 2.151 0.548

11 311 IN–FC dim - 4000, 500, 200, 1 119.53 0.420 0.974 1.565 0.598 1.742 0.600 2.217 0.534
12 312 IN–FC dim - 6000, 2000, 500, 200, 1 129.62 0.424 0.973 1.574 0.595 1.730 0.608 2.130 0.584
13 313 IN–kernel-3x3–no-padding 117.30 0.412 0.974 1.604 0.572 1.783 0.573 2.227 0.458
14 314 IN–PIP Threshold 1.1 131.94 0.424 0.974 1.463 0.654 1.779 0.566 2.002 0.54
15 315 IN–PIP Threshold 1.25 131.98 0.417 0.978 1.394 0.695 1.614 0.701 1.749 0.692

16 316 IN–PIP Threshold 1.4 132.50 0.376 0.980 1.422 0.698 1.537 0.726 1.717 0.725
17 317 IN–PIP Threshold 1.5 132.98 0.391 0.976 1.381 0.708 1.501 0.750 1.793 0.651
18 318 IN–PIP Threshold 1.6 132.81 0.359 0.981 1.409 0.697 1.472 0.757 1.793 0.656
19 319 IN–PIP Threshold 1.4 w/Lipinski 71.24 0.379 0.98 1.385 0.662 1.665 0.685 1.659 0.642
20 320 IN–PIP Threshold 1.5 w/Lipinski 71.60 0.392 0.977 1.433 0.653 1.652 0.682 1.636 0.654

21 321 BN–PIP Threshold 1.4 130.72 0.376 0.980 1.414 0.705 1.530 0.720 1.646 0.716
22 322 IN–1-4–Drop0-8 131.78 1.330 0.962 1.953 0.688 2.115 0.703 2.212 0.675
23 323 IN–1-4–BS15 138.75 0.372 0.979 1.418 0.703 1.543 0.730 1.668 0.712
24 324 IN–1-4–r6 504.70 0.413 0.975 1.456 0.680 1.547 0.714 1.758 0.698
25 325 IN–1-4–Cdrop0-1-all 133.37 0.546 0.979 1.454 0.703 1.482 0.725 1.650 0.722

26 326 IN–1-4-Cdrop0-2-all 133.17 0.599 0.957 1.479 0.703 1.485 0.739 1.541 0.745
27 327 IN–1-4–Cdrop0-1-mid 134.27 0.394 0.978 1.432 0.697 1.544 0.722 1.725 0.702
28 328 IN–1-6–Cdrop0-1-mid 133.78 0.36 0.981 1.394 0.706 1.438 0.754 1.712 0.671
29 329 IN–1-4–Cdrop0-2-mid 133.00 0.397 0.979 1.428 0.697 1.491 0.738 1.703 0.693
30 330 IN–1-4–Cdrop0-1-all-r6 507.50 0.4 0.98 1.442 0.69 1.532 0.708 1.708 0.688

(continued. . .)

Exp# ExpID details time RMSEtr Rtr RMSEv Rv RMSE2016 R2016 RMSE2013 R2013

31 331 Conv3D–IN–1-4 896.05 0.785 0.912 1.422 0.702 1.529 0.710 1.799 0.657
32 332 Conv3D–IN–1-4-Cdrop0-1-mid 898.57 0.551 0.956 1.410 0.713 1.533 0.728 1.839 0.683
33 333 Conv3D–IN–1-4–Cdrop0-2-all 890.03 1.010 0.854 1.450 0.694 1.639 0.682 1.929 0.650
34 334 Conv3d–IN–1-4–Cdrop0-2-all-BS15 937.86 0.807 0.902 1.448 0.695 1.502 0.721 1.717 0.686

Chapter 4. Results & Evaluation 4.4. LigityScore Best Performance Results

4.4 | LigityScore Best Performance Results
Table 4.5 summarises the results of the three models presented in previous sections.
Each of the best performing method highlighted previously was run ten times using
different validation sets, to remove any bias that might be caused from testing using a
single validation set. Each validation set consists of 1,000 randomly sampled protein-
ligand complexes from the PDBbind refined set. Throughout all experiments, the test
sets were kept to the complexes outlined in the CASF-2013 and CASF-2016 for evalua-
tion purposes with the CASF benchmark and other literature. The rest of the protein-
ligand complexes were used for training. Therefore each different validation set vari-
ation also represents a slightly different training set. The results in Table 4.5 represent
the mean results over the 10 tests with their respective standard deviation. As can be
noted from Table 4.5 the models have a low standard deviation from the mean across
the different metrics for each of the datasets used.

LigityScore3D shows a significant performance improvement for the Core-2013 model
with an average of 0.71 R-score that is well above the 0.66 and 0.63 achieved for Ligi-
tyScore1D (v2016) and LigityScore1D (v2018) respectively. On the other hand the results
for Core-2016 for LigityScore3D shows comparable performance to the LigityScore1D
(v2018) models with only 0.01 difference in R-score. Each LigityScore3D model takes
considerable time for training, and due to limited time and resources it was not tested
on the PDBbind v2018 dataset. For these reasons the best performing model is Lig-
ityScore3D with an R-score of 0.725 and 0.713 for Core-2016 and Core-2013 test sets
respectively.

Throughout the experiments described in Tables 4.2, 4.3, and 4.4 a number of tech-
niques were introduced to reduce the effect of overfitting. These include:

� Normalisation (BatchNorm or InstanceNorm). The normalisation alogrithms in-
troduce some noise when calculating the estimate of mean and variance from the
mini-batch sample. This estimate introduces additional noise in the model that
acts as a regularising parameter. In fact, Ioffe and Szegedy (2015) detail that when
normalisation is applied, dropout probability rate can be reduced.

� Data Augmentation. Two main forms for data augmentation where applied. In
the first method artificial samples were created with rotated representation of the
original input. This method of artificial data augmentation did not enhance Lig-
ityScore performance. The second data augmentation method dealt with adding
new protein-ligand complexes from the latest PDBbind versions. As reported in

132

Chapter 4. Results & Evaluation 4.4. LigityScore Best Performance Results

Table 4.5, improved results (+0.04) were seen for Core-2016 test set, whilst less
accurate results (-0.03) were obtained for Core-2013 test set.

� Dropout. Dropout was applied in all baselines with a drop probability of 0.5.
Experiments to increase dropout were performed that showed longer convergence
times and no prediction improvements.

� Spatial Dropout. Spatial Dropout was added at the convolution layer and results
showed that this method help improve the generalisation of the models where the
models did not overfit for the throughout the training epochs as was shown in
Figure 4.6 and 4.13.

� L2 Regularisation. L2 regularation was added as part of the Adam optimisation,
that would minimize unimportant features in model.

� Reduction in Network Complexity. A number of experiments were done to de-
termine if less complex models would improve network performance. Different
number of convolution layers, and also different number and sizes of fully con-
nected layers were tested. Simpler model that provided similar performance to
more complex ones were preferred in the selection of model parameters. In Lig-
ityScore1D thre convolutation layers and three fully connected layers are used,
whilst in LigityScore3D four convolution layers, and four fully connected layers
are used since the latter has a larger input dimension.

133

Chapter4.
Results&

Evaluation
4.4.

LigityScore
BestPerform

ance
Results

Table 4.5: Performance of LigityScore1D when trained with PDBbind v2016 and v2018, and LigityScore3D trained with PDB-
bind v2016, showing average and standard deviation for 10 tests using different validations sets from the refined set. Predic-
tion performance for training, validation, Core-2016, and Core-2013 are listed.

RMSEtr MAEtr STDtr Rtr RMSEv MAEv STDv Rv RMSE2016 MAE2016 STD2016 R2016 RMSE2013 MAE2013 STD2013 R2013

LigityScore1D (v2016)

mean 0.406 0.323 0.393 0.974 1.438 1.144 1.432 0.698 1.556 1.234 1.555 0.699 1.861 1.485 1.701 0.657
std ± 0.151 0.118 0.157 0.027 0.038 0.031 0.032 0.020 0.039 0.031 0.038 0.018 0.076 0.051 0.042 0.021

LigityScore1D(v2018)

mean 0.964 0.764 0.947 0.845 1.447 1.158 1.436 0.684 1.516 1.223 1.461 0.741 1.831 1.472 1.743 0.635
std ± 0.295 0.237 0.287 0.076 0.037 0.033 0.029 0.017 0.066 0.058 0.038 0.016 0.072 0.064 0.054 0.028

LigityScore3D (v2016)

mean 0.621 0.490 0.531 0.957 1.479 1.182 1.435 0.692 1.509 1.224 1.497 0.725 1.676 1.335 1.583 0.713
std ± 0.077 0.059 0.116 0.021 0.020 0.013 0.021 0.009 0.034 0.031 0.034 0.015 0.050 0.040 0.044 0.019

134

Chapter 4. Results & Evaluation 4.5. Evaluation

4.5 | Evaluation
In the previous sections we have presented the results and discussion on the experi-
ments done for LigityScore. In order to gauge the effectiveness of our work, LigityScore
needs to be benchmarked with other scoring functions that use a similar methodology.
The following evaluations will be presented in the next section.

� LigityScore will be evaluated against the Pafnucy (Stepniewska-Dziubinska et al.,
2017) model that was used to build our baseline. LigityScore results will be com-
pared with our implementation of Pafnucy as well as the implementation using
the authors’ published scripts.

� LigityScore will be evaluated using the CASF scoring power benchmark using the
test sets listed in CASF-2013 (Li et al., 2014a) and CASF-2016 (Su et al., 2018). Apart
from specifying the method and metrics used for evaluation, the CASF bench-
marks also include a list of 29 and 34 scoring functions respectively, together with
their results, permitting a direct comparison against their performance.

� LigityScore will be evaluated against other recent literature that utilize ML and
DL techniques, that were also evaluated by either the CASF-2013 or the CASF-
2016 benchmarks. To the best of our knowledge a comprehensive list of the scor-
ing functions utilizing ML and DL techniques for the last four years are listed
in Tables 4.7 and 4.8 to indicate the ranking of LigityScore with respect to these
methods and also to those within the CASF benchmarks.

The metrics used for evaluation with the CASF benchmark include the Pearson corre-
lation coefficient, R, and the standard deviation in linear regression, SD. Other metrics
included for our evaluation include the RMSE and MAE, that although they are not part
of the CASF benchmark that are used in various literature (as highlighted in Tables 4.7
and 4.8) and therefore will facilitate the comparison of LigityScore to these methods.
These evaluation metrics are detailed in Section 2.3.

The CASF-2013 (core set 2013) and CASF-2016 (core set 2016) contain 195 and 285
protein-ligand complexes respectively. Due to some parsing errors returned by RDKit
when loading some of the molecules, and also due to the fact that not all protein-ligand
complexes have PIPs that are conformant with the distance thresholds during feature ex-
traction, some complexes were excluding from the testing set keeping 182 and 279 com-
plexes for the CASF-2013 and CASF-2016 respectively. The RDKit errors were mainly
generated due to invalid atomic bonds. Boyles et al. (2020) also mention molecule pars-
ing issues when using OpenBabel and RDKit. As described in Section 3.3.1 we have

135

Chapter 4. Results & Evaluation 4.5. Evaluation

attempted to fix these errors using a different file format, and also by downloading the
structure directly from PDB. Such complexes exclusions are also present in other scor-
ing functions defined in CASF benchmarks, and the recommendation by the authors for
the scoring power computation is to simply remove them (Li et al., 2014a). Therefore,
all quoted results for LigityScore use the 182 and the 279 complexes for CASF-2013 and
CASF-2016 respectively.

4.5.1 | Evaluation with Pafnucy
Table 4.6 illustrates a comparison of the LigityScore results with Pafnucy for the core-
2016 set. Two variants of Pafnucy are highlighted, where the first model was run using
the authors’ provided scripts, whilst the second model was run using our own imple-
mentation scripts as is described in Section 3.2.

As can be noted there is a significant difference in the training time per epoch from
the LigityScore models to the Pafnucy models. The original Pafnucy model has a train-
ing time per epoch of 34.7 minutes which is approximately 16 times more than Ligi-
tyScore3D, and 43 times more than LigityScore1D. This difference is mainly attributed
to the use of the Conv3d convolution module. LigityScore3D was also tested using the
Conv3d convolution module and as reported in Table 4.4, this module increases the
model complexity due to higher multi-dimensional convolutions computations and also
increases the number of learnable parameters. Our results also show an increase in train-
ing time when using the Conv3d module, and the LigityScore3D model with Conv3d
layers requires approximately 30 minutes per epoch. It is important to note that our im-
plementation includes a model evaluation at each epoch for the training and validation
sets, so if these are removed the actual training time required is less. This is also one of
the main reasons why our Pafnucy implementation has a higher training time than the
original implementation.

Additionally, Pafnucy uses longer training cycles than LigityScore, as each epoch con-
siders 24 different rotated representations of the input that simulate a rotationally in-
variant input. Therefore, although there are fewer learnable parameters than our Ligi-
tyScore3D, the rotations and complex Conv3d computations increase training time. The
larger number of learnable parameters are due to larger inputs to the FC layers and also
due to wider FC layers.

LigityScore was trained using a mini-batch size of 20, whilst Pafnucy was trained us-
ing a mini-batch size of 5. Therefore, LigityScore performs less CNN backward passes
and parameter updates which also contributes to the improved execution time. There-
fore our models are computationally more efficient due to the simpler models, rotation-

136

Chapter 4. Results & Evaluation 4.5. Evaluation

Table 4.6: LigityScore Evaluation with the original Pafnucy Stepniewska-Dziubinska
et al. (2017) and our implementation of the Pafnucy Model. The best results of Lig-
ityScore3D and 1D are compared with Pafnucy and show slightly lower prediction
performance, and significant improvement in computational efficiency. ET is the total
epochs used in training, and EB represents the epoch with the best validation set loss.

Scoring Function ET EB

total
train
time
/min

epoch
train
time
/min

model
params
in M

RMSE MAE SD R

CASF-2016

Pafnucy* 20 14 693 34.7 12.8 1.468 1.181 1.301 0.750
Pafnucy
(our impl.)

20 11 874 43.7 12.8 1.388 1.153 1.411 0.761

LigityScore3D 60 48 134 2.2 94.3 1.509 1.224 1.497 0.725
LigityScore1D
(v2018)

140 23 111 0.8 3.9 1.516 1.223 1.461 0.741

* calculated using Stepniewska-Dziubinska et al. (2017) provided scripts. Time calculation
does not include model evaluation for training and validation sets after each epoch.

ally invariant methodology, and use of larger mini-batch samples. All models listed in
Table 4.6 were run on AWS EC2 g4dn instances as was described in Section 3.8.3.

Stepniewska-Dziubinska et al. (2017) report the Pafnucy R-score performance on Core-
2016 at 0.78. Our replication results using the authors scripts, and our own imple-
mentation of Pafnucy produce similar results which are also close to that reported in
Stepniewska-Dziubinska et al. (2017) at 0.750 and 0.761 respectively. This difference
from the published results can be attributed to small changes used in our implemen-
tation and also different samples in the training and validation sets due to random
sampling. Stepniewska-Dziubinska et al. (2017) do not mention if their results were
computed using different randomly sampled validation and training sets.

As noted previously, the LigityScore models achieve a similar average prediction per-
formance for the Core-2016. The results of the average LigityScore1D (trained on the
2018 PDBbind dataset) has an R-Score performance difference of 0.04 from the original
results reported in Stepniewska-Dziubinska et al. (2017), and a difference of only 0.02
from our implementation of Pafnucy. Therefore we can conclude that LigityScore was
shown to have a suitable protein-ligand representation that shows comparable perfor-
mance in binding affinity predictions to the chosen baseline model, which is signifi-
cantly more computationally efficient. LigityScore is evaluated with other models using
the CASF-2013 and CASF-2016 benchmarks in the next section.

137

Chapter 4. Results & Evaluation 4.5. Evaluation

4.5.2 | CASF Scoring Power Benchmark
The Comparative Assessment of Scoring Functions (CASF) was designed as a bench-
mark specifically for scoring functions. CASF includes a number of power scores in-
cluding scoring, ranking, docking, and screening which are used to evaluate and rank
the scoring function in each area. In this study we focus on the scoring power bench-
mark. The CASF uses a specific set of high-quality complexes taken from the refined set
of the PDBbind datasets. The terms Core-2016 test set and CASF-2016 test set are syn-
onymous, and the year label represents the PBDbind versions used to extract the set.
The same applies for the Core-2013 and CASF-2013. The core set details are described
in Section 3.3, whilst the CASF benchmark is discussed in Section 2.3.1.

The scoring power uses the LigityScore predicted binding affinities for each protein-
ligand complex in the test set to extract R and SD values. Equation 2.29 is used to
compute R, whilst SD is computed by Equation 2.30 together with a linear regression
model to fit the experimental and predicted affinity values in a linear model.

The ranking of LigityScore for CASF-2013 and CASF-2016 are presented in Tables 4.7
and 4.8. The scoring functions ranked directly as part of the CASF-2013 and CASF-2016
are listed in black, and their results are taken directly from Li et al. (2014a) and Su et al.
(2018) respectively. All CASF reported results are listed in terms of R and SD using
the former to rank the scoring function. The scoring functions listed in blue represent
results reported as per literature reviewed in individual publications that utilise also
the CASF to benchmark their work. Tables 4.7 and 4.8 thus provide to the best of our
knowledge, a comprehensive list of the scoring functions developed in recent years to
date, that compare and rank the different scoring functions available.

LigityScore3D, highlighted in green, achieved 5th place in the CASF-2013 benchmark
with an average R-score of 0.713, and exceed the reported CASF-2013 score for Pafnucy.
The 4th place is taken by the models of EIC-Score (Nguyen and Wei, 2019b) and PLEC-nn
Wójcikowski et al. (2019) that achieve both an R-Score of 0.774.

The top performing CNN based model is in the OnionNet model developed by Zheng
et al. (2019) where it achieves an R-Score of 0.782. The 2nd place was achieved by
NNScore2.0 enhanced with RDKit features (Boyles et al., 2020), whilst AGL (Nguyen
and Wei, 2019a) represents the best performing model to date with an R-Score of 0.792.
It is important to note that the top five models have a performance difference range of
only 0.018, whilst the difference of LigityScore3D from the AGL is 0.079. LigityScore1D
achieved slightly worse performance but still outperformed the classical scoring func-
tion in terms of scoring power.

On the CASF-2016 benchmark, LigityScore model achieve 7th and 8th places. Ligi-

138

Chapter 4. Results & Evaluation 4.5. Evaluation

Table 4.7: LigityScore Evaluation on the CASF-2013 Scoring Power benchmark. Our
results are highlighted in green achieving 5th and 8th places out of the scoring functions
listed in the CASF benchmark (black) and other literature that use the same benchmark
(blue) published after Li et al. (2014a). Only the top 20 scoring function of the CASF-
2013 benchmark are included in this list. Full table is available in the supplementary
information of Li et al. (2014a). The SF are ranked using the Pearson Correlation, R.

Scoring Function Scoring
Power
Rank

N RMSE SD R

AGL (Nguyen and Wei, 2019a) 1 195 - 1.45 0.792
LearningFromLigand
NNScore+RDKit (Boyles et al., 2020)

2 180 - - 0.786

OnionNet (Zheng et al., 2019) 3 195 1.45 1.45 0.782
EIC-Score (Nguyen and Wei, 2019b) 4 195 - - 0.774
PLEC-nn (Wójcikowski et al., 2019) 4 195 - 1.43 0.774

LigityScore3D 5 182 1.68 1.58 0.713
Pafnucy (Stepniewska-Dziubinska
et al., 2017)

6 195 1.62 1.61 0.700

DeepBindRG (Zhang et al., 2019) 7 195 1.82 - 0.639
LigityScore1D 8 182 1.83 1.74 0.635
X-Score 9 195 - 1.77 0.622

X-ScoreHS 10 195 - 1.77 0.620
X-ScoreHM 11 195 - 1.78 0.614
X-ScoreHP 12 195 - 1.79 0.607
∆SAS 13 195 - 1.79 0.606
ChemScore@SYBYL 14 195 - 1.82 0.592

ChemPLP@GOLD 15 195 - 1.84 0.579
PLP1@DS 16 195 - 1.86 0.568
PLP2@DS 17 195 - 1.87 0.558
GScore@SYBYL 18 195 - 1.87 0.558
ASP@GOLD 19 195 - 1.88 0.556

ASE@MOE 20 195 - 1.89 0.544
ChemScore@GOLD 21 189 - 1.90 0.536
DScore@SYBYL 22 195 - 1.92 0.526
Alpha-HB@MOE 23 195 - 1.94 0.511
LUDI3@DS 24 195 - 1.97 0.487

GoldScore@GOLD 25 189 - 1.97 0.483
Affinity-dG@MOE 26 195 - 1.98 0.482
LigScore2@DS 27 190 - 2.02 0.456
GlideScore-SP 28 169 - 2.03 0.452

139

Chapter 4. Results & Evaluation 4.5. Evaluation

Table 4.8: LigityScore Evaluation on the CASF-2016 Scoring Power benchmark. Our
results are highlighted in green achieving 7th and 8th places out of the scoring func-
tions listed in the benchmark (black), and other literature that use same benchmark
(blue) published after Su et al. (2018). Only the top 20 scoring function of the CASF-
2016 benchmark are included in this list. Full table is available in the supplementary
information of Su et al. (2018). The SF are ranked using the Pearson Coefficient, R.

Scoring Function Scoring
Power
Rank

N RMSE SD R

AGL (Nguyen and Wei, 2019a) 1 285 1.27 - 0.830
EIC-Score (Nguyen and Wei, 2019b) 2 285 - - 0.826
LearningFromLigand
NNScore+RDkit (Boyles et al., 2020)

2 276 - - 0.826

KDeep(Jiménez et al., 2018) 3 285 1.27 - 0.820
PLEC-nn (Wójcikowski et al., 2019) 4 285 - 1.26 0.817

OnionNet (Zheng et al., 2019) 5 285 1.28 1.26 0.816
∆VinaRF20 5 285 - 1.26 0.816
Pafnucy (Stepniewska-Dziubinska
et al., 2017)

6 285 1.42 1.37 0.780

LigityScore1D 7 279 1.52 1.46 0.741
LigityScore3D 8 279 1.51 1.50 0.725

X-Score 9 285 - 1.69 0.631
X-ScoreHS 10 285 - 1.69 0.629
∆SAS 11 285 - 1.70 0.625
X-ScoreHP 12 285 - 1.70 0.621
ASP@GOLD 13 282 - 1.71 0.617

ChemPLP@GOLD 14 281 - 1.72 0.614
X-ScoreHM 15 285 - 1.73 0.609
Autodock Vina 16 285 - 1.73 0.604
DrugScore2018 17 285 - 1.74 0.602
DrugScoreCSD 18 285 - 1.75 0.596

ASE@MOE 19 285 - 1.75 0.591
ChemScore@SYBYL 20 285 - 1.76 0.590
PLP1@DS 21 285 - 1.77 0.581
ChemScore@GOLD 22 279 - 1.78 0.574
G-Score@SYBYL 23 284 - 1.79 0.572

Alpha-HB@MOE 24 285 - 1.79 0.569
PLP2@DS 25 285 - 1.80 0.563
Affinity-dG@MOE 26 285 - 1.81 0.552
LigScore2@DS 27 285 - 1.83 0.540

140

Chapter 4. Results & Evaluation 4.6. Summary

tyScore1D achieving 7th place with a slightly higher performance than LigityScore3D
with an average R-score performance 0.741. The Pafnucy model is in 6th place with a
difference of 0.04 from ligityScore1D and is discussed in detail the previous section. The
top seven scoring function report a very similar performance for the top five positions
with a range difference of only 0.014, and a difference to LigityScore1D of 0.089.

Although our results do not make it to the top five in the CASF-2016 benchmark eval-
uation, the LigityScore protein-ligand representation is shown to be successful for use
for binding affinity prediction. From the experiments carried out the performance gain
for LigityScore representation was mostly achieved through changes in the data repre-
sentation by increasing the PIP threshold factors, providing motivation to seek addi-
tional improvements to the LigityScore data model that can further enhance the predic-
tion performance.

4.6 | Summary
In this chapter we have presented the results achieved for our two variants of Ligi-
tyScore. Various experiments for each LigityScore version were carried out changing
different parameters of the data model and also the CNN architecture. Noticeably the
best results are achieved when using the InstanceNorm normalisation technique at the
convolution layers, increasing the PIP threshold factors, and by applying a small spatial
dropout at the convolution layers. The model with the best performance was further
tested using 10 variations of training and validation sets to remove bias from the results
tied to a particular training and validation set.

Our results have showed that our model is successful to be used as a suitable protein-
ligand representation where it achieved an average performance on the Core-2013 that
is marginally higher than the result reported in Pafnucy as our baseline study. On the
other hand Pafnucy had slight better results for the Core-2016 set. Additionally we have
also successfully used a number of techniques to enhance the performance of our CNN
model achieving the two main aspects of our research question presented in Section 1.3.

We have also evaluated our model with the CASF-2013 and CASF-2016 benchmarks,
and also with other recent literature that also used either of these benchmarks. Ligi-
tyScore3D achieved the best performance in the CASF-2013 benchmark and ranks 5th

place, whilst LigityScore1D trained on the PDBbind v2018 showed best performance in
the CASF-2016 benchmark achieving 7th place.

141

5

Conclusions

In this study we explored the use of convolutional neural networks to develop a scor-
ing function, called LigityScore for binding affinity prediction. Machine learning (ML)
scoring functions (SF) have been developed to address the limitations of classical mod-
els, such as the use of linear models, imposed functional form, and their inability to
learn from new data. However, ML based scoring functions still rely on a degree of
feature engineering that requires expert knowledge to preprocess the data, which led to
the introduction of deep learning methods. In this dissertation we use a representation
to describe the protein-ligand complex extracted directly from its structural and inter-
acting properties without relying of expert knowledge. This is then fed to a CNN for
feature extraction and binding affinity prediction.

Chapter 1 provides an introduction to the virtual screening domain describing the
motivation to enhance and search for new scoring functions. Scoring functions are the
heart of structure based drug design, where they are used to estimate how strongly
the docked pose of a ligand binds to the target. Therefore, seeking a scoring function
that can accurately predict this binding affinity is key for successful virtual screening
methods.

Chapter 2 gives comprehensive background information on scoring functions used
for SBVS, and details the CNN architecture and various techniques that were devel-
oped in recent years to enhance its effectiveness and performance. Chapter 2 provides a
literature overview of the scoring function methods, starting with the classical methods,
followed by ML methods as better scoring functions, and then leading to deep learning
(DL) methods that can perform automatic feature extraction.

Chapter 3 provides implementation details on the algorithms used to generate the
LigityScore representation. The data pipeline used to train and test the model is also
described in detail. The data representation process is split into two main components

143

Chapter 5. Conclusions 5.1. Achieved Aims and Objectives

where first, the pharmacophoric interactions points (PIPs) are extracted from the protein
and ligand around the binding site, and secondly the PIPs are processed to generate a
feature matrix or feature hypercube for LigityScore1D and LigityScore3D respectively,
as is illustrated in Figures 3.9 and 3.10. Chapter 3 describes also the CNN architecture
used for each model and discusses the experiments carried out to optimise the data
representation and the CNN architecture.

Results and Evaluation are presented in Chapter 4. The experiments performed are
described in detail, and a discussion on the results obtained is provided to highlight the
strategy used to find the best performing models. The average performance of the best
models are evaluated using 10 different randomly sampled validation sets with their
corresponding training set, to reduce the bias introduced from a single validation and
training set combination. The average performance is then evaluated with results from
the CASF-2013, and CASF-2016 benchmarks.

5.1 | Achieved Aims and Objectives
The main focus of this study was to answer the following research question.

Can deep learning approaches be used in scoring functions to augment the predic-
tive scoring power in SBVS techniques?

This research question was tackled in two aspects to improve the predictive scoring
power. The first aspect dealt with finding a suitable representation of the protein-ligand
complex that can be used as input to the CNN. A key aspect of this representation is that
it is built without using expert drug design knowledge, but rather it utilises a more sim-
plistic representation that is passed to the CNN to automatically extract the underlying
complex representations. These CNN feature maps can then be used to distinguish the
relationship between the protein and the bound ligand and estimate their affinity using
a regression type output.

To this effect we have developed two different protein-ligand representations that are
extracted directly from the 3D structure of both the protein and ligand using pharmo-
cophoric features inspired by the Ligity method of Ebejer et al. (2019). The pharma-
cophoric features across both the protein and ligand are used to extract PIPs that need
to conform to specific family types and distance thresholds so as to capture only the
stronger interactions between the protein’s and ligand’s pharmacophoric feature. The
two methods developed in this study include the LigityScore1D that uses the single dis-

144

Chapter 5. Conclusions 5.1. Achieved Aims and Objectives

tance between the protein PIP and the ligand PIP, hence the name LigityScore1D. Each
distance for each PIP pair combination is discretised to increment binning counters for
its corresponding pharmacophoric family-pair vector. The different pharmacophoric
family pair combinations are stacked to construct a matrix representation of the com-
plex. The other representation, termed LigityScore3D, uses a combination of 3-PIPs at
a time to extract three different distances from the triangular structure formed by the
3-PIP combination. For the selection of the 3-PIPs combination, the cases where two
PIPs are chosen from the protein PIP pool and one from the ligand PIP pool, and vice
versa, are both considered. In each combination at least one of the three PIPs must be on
the other molecule. This varies from the Ligity method where only combinations of lig-
and PIPs were considered. These distances are also discretised and are used as binning
coordinates in a feature hypercube for each PIP family set.
The choice of representation of the protein-ligand structure determines the flexibility

and expressiveness that the model is able to learn and ultimately its scoring power.
Although DL methods extract features automatically during training, correct represen-
tation of the complex is fundamental for the feature extraction ability of the DL model.
Various parameters relating the selection of PIPs were tested to seek out the best possi-
ble representation of the protein-ligand complex.
LigityScore representation tackled successfully one of the two aspects of our research

question. The second aspect dealt with finding a suitable CNN model that can extract
features from our representation and provide a successful prediction for binding affinity
of the complex. A number of experiments were carried out using a random hyperpa-
rameter optimisation technique. The best results were achieved when using higher PIP
threshold factors, InstanceNorm normalisation, and small spatial dropout at the convo-
lution layers. The data representation component and the CNN architecture, tuned for
the representation to provide the best prediction performance, together constitute the
LigityScore scoring function.
In line with the objectives, LigityScore models were also evaluated on the latest two

CASF benchmarks. The Pearson correlation coefficient, and the standard deviation in
linear regression were used to compare LigityScore with the benchmark model, and also
other models in literature published in recent years. The scoring functions from both
the benchmark, and the literature reviewed were compiled in an updated list in order to
provide a better understanding of LigityScore performance across a comprehensive list
of SFs. The LigityScore3D has achieved better overall results and showed similar perfor-
mance for the CASF-2016 and CASF-2013 benchmarks. LigityScore3D ranked 5th place
in the CASF-2013 benchmark, and 8th in CASF-2016, with an average R-score perfor-
mance of 0.713 and 0.725 respectively. LigityScore1D obtained best results when trained

145

Chapter 5. Conclusions 5.2. Critique and Limitations

using the PBDbind v2018 dataset, and ranked 8th place in the CASF-2013 and 7th place
in CASF-2016 with an R-score performance of 0.635 and 0.741 respectively.

Therefore in summary, the objectives of this study have been met, and its major con-
tribution is in the presentation of a novel protein-ligand representation for use as a
scoring function for binding affinity prediction adapted from Ebejer et al. (2019). Since
LigityScore is based on distances between pharmacophoric features, it also presents a
rotationally invariant representation. Additionally, the method shows relatively good
performance that exceed the Pafnucy performance on the CASF-2013 benchmark, using
a less computationally complex model that can be trained 16 times faster. The Ligi-
tyScore models can potentially be used for affinity predictions for novel molecules, as a
scoring function for docking-based virtual screening, and also in structure based ligand
discovery campaigns.

5.2 | Critique and Limitations
A very recent paper Shen et al. (2020) highlighted the importance of assessing the scor-
ing function in all four powers (scoring, ranking, docking, and screening) of the CASF
benchmark for a 360 degree performance evaluation. Shen et al. (2020) use the CASF
benchmark to assess all the power metrics for 14 machine learning-based scoring func-
tions.

Unfortunately due to time constraints for this project, and the recent release of Shen
et al. (2020) it was not possible to extend evaluation of LigityScore on the rest of the
powers. This is one of our limitations in the sense that these results are not known, and
additional work would need to be done to extend LigityScore for testing the other pow-
ers in the CASF benchmark. This will be considered for future work. Recent literature
for deep learning scoring functions also focused on only the scoring power aspect such
as Stepniewska-Dziubinska et al. (2017), Jiménez et al. (2018), and Zheng et al. (2019),
and therefore a similar approach was taken for our work. Shen et al. (2020) has shown
that Stepniewska-Dziubinska et al. (2017) and Zheng et al. (2019) do not perform well
for rest of the benchmark powers, and even report performance lower than the classical
functions.

Although the ideal scoring function should perform well in all areas, we argue that
this is not necessarily the case and that not every use case scenario needs to use the ex-
act same scoring function model. A particular ML scoring function may not be suited for
every scenario, and therefore a different version, trained for a particular scope, might be
better. As an example, the screening power would require the scoring function model to

146

Chapter 5. Conclusions 5.2. Critique and Limitations

differentiate between actives and decoys. However, the models trained with the PDB-
bind dataset do not include any decoy information.

ML models, including DL, use learning by representation to extract the underlying
function in the data. Therefore, if the dataset does not include the decoy class it is in-
tuitive that the model might not respond well when presented with decoy information.
To the best of our knowledge there are no available protein-molecule decoy data that
include also their binding affinity. As this might not be possible to record it presents a
challenge, as it presents a limitation that restricts the DL model’s generalisation ability.
One way to workaround this is to use decoys with a manual preset binding affinity set
to zero or negative value to indicate its non-binding nature. However this approach
would need to be validated. Therefore in this sense a ML model trained with decoys,
might not be suited for screening, whilst a model trained on experimental data only,
might be better suited for scoring power assessment. A ML SF model can be devel-
oped to cater for the particular requirements, leveraging on the flexibility they provide
to adjust and derive their parameters from the given training data.

As was shown for the LigityScore1D experiments in Section 4.3.1, training on different
versions of PDBbind datasets requires slight variations in the tuning of the CNN model.
Therefore, the model might be sensitive to changes in training sets which would require
different optimisation. However this can be considered as a more general limitation
for ML models (Zheng et al., 2019). Due to limited computational resources we have
not performed an exhaustive sweep on all the model parameters, and have used some
defaults or values recommended in literature. Therefore it is not excluded that a better
parameter set, different than those listed in Table 3.5, can provide a better performance.
LigityScore is tested only on the CASF benchmarks. Additional test sets could be used
to confirm the generalisation ability of the model.

In an effort to better explain the deep learning model, it would be beneficial to de-
termine which PIP families pairs contribute most to the predicted output. One way to
explore this is to determine their effect on the weights of the model. However, since the
feature vectors or feature cubes, for LigityScore1D and LigityScore3D respectively, are
stacked together and treated as one input, it is difficult to determine the variation in size
and distributions of the weights with respect to each of the PIP’s family sets. Another
method would be to exclude certain PIP families from the representation during the
processing of the feature generation. Each PIP family combination would be systemat-
ically excluded, or zeroed to determine the effect it has on the prediction performance
when compared to the baseline model.

147

Chapter 5. Conclusions 5.3. Future Work

5.3 | Future Work
There are various opportunities for future work to overcome the limitations mentioned
in the previous section, and also to enhance the LigityScore performance. As a first
step, additional work is required to further develop our method so that it can be bench-
marked on all the powers in the CASF benchmark. This avenue might also lead to
developing variants of LigityScore that would be optimised for specific tasks, such as
screening power. In this case, experiments could be done to include decoy protein-
ligand complexes with manually set, poor affinity values, so that they can be included
in the training of the CNN.

Subsequent steps for future work would involve optimising the LigityScore perfor-
mance. The starting point to improve the LigityScore performance should be to focus
on the data representation component of the protein-ligand complex. Further research
would be required into how to build on the existing respresentation, and possibly seek
ways to incorporate alternative types of features within LigityScore. In this regard one
of the research tasks would be to look into additional pharmacophoric feature families
that could help create a better descriptor. Additionally, other features such as the counts
for distances between key atom combinations could be considered as another dimension
to the LigityScore representation. Therefore combining different types of descriptors as
multiple channels as input to the CNN could potentially be a suitable method to en-
hance the representation. The key challenge is not only to find a suitable descriptor, but
also to build it in a form that is a suitable input to a CNN. Future work for improvement
can also be tackled from the CNN model perspective by testing different architectures
that have better generalisation ability.

5.4 | Final Remarks
On a final note, finding a suitable representation of the protein-ligand complex is a ma-
jor challenge to build a successful scoring function, and is key for accurate predictions
using deep learning techniques. In our work we have successfully found a suitable
representation that to the best of our knowledge was never used for binding affinity
prediction, which provides good results and ranked 5th in the CASF-2013 benchmark.
Therefore, although our work did not outperform the top scoring function we deem it
is still a valid contribution to the area and may be further enhanced in future work, or
may also serve as motivation and inspiration for other researchers to seek out alterna-
tive methods that increase the effectiveness of scoring functions and virtual screening

148

Chapter 5. Conclusions 5.4. Final Remarks

in general.
We believe a deeper understanding of CNN in the domain of SBVS is still required, and

a breakthrough like the work of Krizhevsky et al. (2012) in the computer vision domain
is still being sought after in this challenging domain. Nonetheless, we also believe that
ML and DL techniques will lead the future of the development of scoring functions.

149

A

Media Content

The media content folder structure provided with this study is highlighted in Figure A.1.
These directories contain the artifacts used to build, test, and evaluate the LigityScore
scoring function. The contents of the each directory are summarised below:

� ligityscore. This is the main directory that contains all source code, datasets, and
folders used to store the various script outputs. This folder can be used to replicate
LigityScore as detailed in Appendix B. The ligityscore directory contains the below
folders:

◦ tensoboard-runs. This directory contains the TensorBoard data files for all
the logs saved during training. These include the loss every 100 mini-batches
for the training set, and the RMSE and R-score values for the training and
validation sets computed after each epoch. Each experiment directory also
contains a number of CNN model checkpoints to save the model parameters
for the epoch with the lowest validation RMSE error. In this folder only the
best performing LigityScore experiments are included.

◦ pdbbind. This folder contains the v2016 and v2018 PDBbind datasets. Each
PDBbind versions includes the INDEX_general_PL.2016 INDEX file that de-
scribes the protein-ligand complex properties, and molecular files for the gen-
eral and refined sets in sdf and mol2 formats. The Core-2013 (CoreSet2013.dat)
and Core-2016 (CoreSet.dat) files are also included with each version of PDB-
bind.

◦ sbvscnnmsc. Contains the source files for the sbvscnnmsc Python package
used to construct the LigityScore SF. The following Python files are included:

151

Appendix A. Media Content

Figure A.1: Media Content Directory Structure.

152

Appendix A. Media Content

* sbvsCNN.py. PyTorch Neural Network class definition. Used to create
CNN models dynamically using different initialisation parameters.

* sbvsData.py. Used to store custom PyTorch Dataset classes for LigityScore1D,
LigityScore3D, and Pafnucy. These are then used by the PyTorch Dat-
aLoader class to load the input to the CNN.

* sbvsHelper.py. Used to store multiple helper classes and functions that are
used across multiple LigityScore scripts.

* sbvsHelperPafnucy.py. Use to store multiple helper classes and functions
that are used to replicate the Pafnucy model.

◦ jupyter-notebooks. This directory contains a number of jupyter notebooks
that were used during development of LigityScore for initial testing. Some of
the notebooks (results-plots.ipynb and Hotpoint Features Diagram.ipynb) were
used to generate figures and plots used in this dissertation.

◦ pafnucy replication. Contains the source code used for our Pafnucy imple-
mentation.

◦ LigityScore_Output. This directory is used to store any output files pro-
duced by the LigityScore scipts. These include the output from pre-processing,
HotSpots extraction, feature generation and its split into Training, Valida-
tion, Test, and Test2013 sets. This directory contains all the data files used
to run the experiments listed in Tables C.1 and C.2. As an example the
PDB2016Hotpoints1-4.zip represents the HotSpots dataset using PDBbind v2016
with a PIP distance threshold of 1.4. The folders with names Ligty1D1-4 con-
tains the LigityScore features, PDB2016-Lig-Features1D1-4.zip extracted us-
ing PDB2016Hotpoints1-4.zip hotspots. Ligty1D1-4 also include the datasets
split from PDB2016-Lig-Features1D1-4.zip for Training, Validation, Test, and
Test2013.

◦ finalResults-batch-training. This folder includes all the csv files used to de-
fined the experiments of Tables 4.2, 4.3, and 4.4.

◦ conda-envs. Contains .yml files for Anaconda Python environments used in
LigityScore.

◦ The root ligityscore directory contains all the source code for LigityScore mod-
els. The LigityScore scripts are summarised in Section A.1 below.

� experiments. Several LigityScore experiments were performed as is detailed in
Chapter 4. The files used or generated for these experiments during each step of

153

Appendix A. Media Content A.1. LigityScore Scripts

the LigityScore pipeline (Figure 3.1) were stored in separate folders. The console
output for each script execution were also saved. The separate folders belonging
to each stage of the LigityScore pipeline stages are summarised below:

◦ 1-PreProcess. Includes the DataFrames generated using the pdb-Lig-preprocess.py
script after pre-processing the PDBbind dataset files. The output is saved as
a .zip compressed pickle object.

◦ 2-HotSpots. Includes the HotSpots DataFrames generated using the pdb-
LigHotpoints.py script, saved as a .zip compressed pickle object.

◦ 3-Features. Includes the DataFrames generated using the pdb-ligFeature.py
script saved as a .zip compressed pickle object. The features are grouped in
separate folders based on the PDBbind version used, and the LigityScore di-
mension. As an example, the file ’PDB2016-Lig-Feature1D1-4.zip’ contains
the LigityScore features for the PDBbind 2016 dataset when the HotSpots al-
gorithm was executed using a PIP distance threshold of 1.4. Different folders
are used to separate the PDBbind version and the LigityScore version used.

◦ 4-DataSet Split. This folder contains a set of Training, Validation, Test2016,
and Test2013 datasets created for each LigityScore feature DataFrame gener-
ated in the previous step.

◦ 5-CNN. The CNN folders contain the files used to carry out the experiments
discussed in Chapter 4. The parameter files used to describe each experi-
ments are provided. Additionally the prediction results for the particular
experiment are also listed. The TensorBoard data files are also including to-
gether with the best checkpoints for each experiment. Since several experi-
ments were performed, only the best performing models are included.

◦ Evaluation. The Evaluation folder contain the output from the Pafnucy repli-
cation, and also the CASF scripts that were run to confirm that the same re-
sults were obtained using our predictions scripts.

A.1 | LigityScore Scripts
The scripts used in LigityScore are summarised below:

� pdb-file-preprocess.py. Used to extract a DataFrame containing information on each
complex available in PDBbind (PDBCode, experimental binding affinity, year, lig-
and name etc), and to check that their corresponding molecular files are available.

154

Appendix A. Media Content A.1. LigityScore Scripts

� pdb-LigHotpoints.py. Program to determine the LigityScore Hotpoints in a PL com-
plex. All the hotspots for each protein-ligand complex in PDBbind are extracted
and collected in one DataFrame.

� pdb-LigFeatures.py. Program to generate LigityScore Features using the HotSpots
DataFrame. It is used to generate both LigityScore1D feature matrix, and the Lig-
ityScore3D 3D feature hypercube. Parameter ’LigDimension’ controls which Ligi-
tyScore feature to generate.

� pdb-split-dataset.py. Script to split the DataFrame obtained from pdb-LigFeatures.py
into Test, Test2013, Training, and Validation sets.

� pdb-training-ligityScore1D.py. Train a CNN model based on LigtyScore1D features.
Model parameters can be defined by a number of script arguments.

� pdb-training-ligityScore3D.py. Train a CNN model based on LigtyScore3D features.
Model parameters can be defined by a number of script arguments.

� pdb-predictions-ligityScore.py. Load a previously trained LigityScore CNN Model,
and run predictions for Training, Validation, CASF-2013, and CASF-2016 datasets.

� pdb-batch-training.py. Training and Predictions for the LigityScore Scoring Func-
tion Experiments. Multiple experiments can be defined in a csv file to be executed
sequentially. For each experiment a model is trained using pdbtrainingligityXD-
function.py and predictions results are calculated using pdbpredictionsligityfunction.
The test protein-ligand complexes in CASF-2013 and CASF-2016 are used to mea-
sure the performance of the experiment using RMSE, MAE, R, and SD metrics.
The full results for each experiments are output as a csv file.

� pdbtrainingligity1Dfunction.py. Used by pdb-batch-training.py to launch CNN train-
ing for LigityScore1D. This script is the same as pdb-training-ligityScore1D.py but
re-written as a function.

� pdbtrainingligity3Dfunction.py. Used by pdb-batch-training.py to launch CNN train-
ing for LigityScore3D. This script is the same as pdb-training-ligityScore3D.py but
re-written as a function.

� pdbpredictionsligityfunction.py. This script is the same as pdb-predictions-ligityScore.py
but was re-written as a function to be used by pdb-batch-training.py. The function
returns the predictions for Training, Validation, Core2016, and Core2013 sets, us-
ing RMSE, MAE, R, and SD metrics.

155

B

LigityScore User Manual

LigityScore is a CNN based scoring function that predicts the binding affinity for protein-
ligand complexes. LigityScore is trained on PDBbind v2016 or v2018 and tested on the
CASF-2013 and CASF-2016 scoring power benchmarks. The following user guide lists
the steps required to run LigityScore3D for the PDBbind v2016. In our case, the CNN
training was run on a ’g4dn.8xlarge’ AWS EC2 instance as it requires more than 64G of
RAM. For LigityScore1D ’g4dn.2xlarge’ instance type can be used.

1. Clone the contents of the provided ligityscore folder.

2. Make ligityscore folder as your ’present working directory’.

$ cd ligityscore

3. Unzip the v2016.zip file under the pdbbind folder. This contains the PDBbind v2016
dataset.

4. Create conda environments — two environments are required. msc-ligityscore-
features environment is required for preprocessing, PIP generation, and feature
generation. Environment msc-ligityscore-cnn is used for CNN training and predic-
tions. The .yml files for these conda environments are located in conda-env direc-
tory.

$ conda env create -f conda-envs/msc-ligityscore-features.yml

$ conda env create -f conda-envs/msc-ligityscore-cnn.yml

157

Appendix B. LigityScore User Manual

5. In the next steps we are going to 1) Process the PDBbind data, 2) Extract the Lig-
ityScore PIP Generation, 3) Generate the LigityScore Descriptors. The files gen-
erated for the experiments run in Chapter 4 by these 3 modules are provided in
the LigityScore_Output folder. Therefore, if you do not want to generate the Ligi-
tyScore features again, you can skip to Step 11 directly to start the CNN training.

Activate msc-ligityscore-features conda environment

$ conda activate msc-ligityscore-features

6. LigityScore PDBBind Preprocessing. This step will preprocesses the PDBbind
dataset and output a file named PDB2016dataframe-example.zip containing a DataFrame
saved in compressed pickle format of all the protein-ligand complexes available
and their properties.

$ python3 pdb-file-preprocess.py --input_dir="./pdbbind/v2016"

--output_dir=’./LigityScore_Output’--output_Filename=

’PDB2016dataframe-example’ --pymolFetch 2>&1 |

tee preprocess-console-output-pdb-2016-example.txt

7. LigityScore PIP Generation. The below command will execute the pdb-LigHotpoints.py
to generate the PIP dataset with a PIP distance threshold factor of 1.4. The file
PDB2016Hotpoints1-4-example.zip will be saved in the LigityScore_Output folder.

$ python3 pdb-LigHotpoints.py --input_filename

’./PDB2016dataframe-example’ --it -1 --verbose 1

--output_filename_Hot "PDB2016Hotpoints1-4-example"

--pip_threshold 1.4 2>&1 | tee

hotpoints-console-output-threshold-1-4-2016-example.txt

8. LigityScore Feature Generation. The below command will execute the pdb-LigFeatures.py
script to generate a hybpercube for each protein-ligand complex from the PIPs
generated in previous step (PDB2016Hotpoints1-4-example.zip).

$ python3 pdb-LigFeatures.py --df_in_hotpoint_filename

PDB2016Hotpoints1-4-example --input_dir_df "./LigityScore_Output"

--output_dir "./LigityScore_Output" --df_out_features_filename

"PDB2016-Lig-Features3D1-4-example" --LigDimension 3

2>&1 | tee ligfeatures-console-output-3D-1-4-2016.txt

158

Appendix B. LigityScore User Manual

9. Activate msc-ligityscore-cnn conda environment.

$ conda activate msc-ligityscore-cnn

10. Create folder named Ligity3D1-4-example. Move the file PDB2016-Lig-Features3D1-
4-example to Ligity3D1-4-example.

11. LigityScore DataSet Split. The pdb-split-dataset.py script will take the LigityScore
features generated in Step 3, and split it into Training, Validation, Test (Core-2016),
and Test-2013 (Core-2013) sets. Four files in ./LigityScoreOutput/Ligity3D1− 4−
example folder will be created corresponding to these four datasets.

$ python3 pdb-split-dataset.py --input_dir

"./LigityScore_Output/Ligity3D1-4-example" --df_in_filname

"PDB2016-Lig-Features3D1-4-example" --output_dir

"./LigityScore_Output/Ligity3D1-4-example"

2>&1 | tee dataSplit-console-output-3D-1-4-2016.txt

12. Create experiment batch file (.csv) containing a list of experiments and their re-
spective CNN parameters. File msc-exp-LigScore3D-2016-experiment-example.csv is
provided as an example containing the all parameters to train the best LigityScore3D
model. This file is located in the finalResults-batch-training folder.

13. Launch Training and Prediction script. The pdb-batch-training.py will launch the
CNN training using the parameters defined in msc-exp-LigScore3D-2016-experiment-
example.csv. The RMSE for the validation set is computed after every epoch and
up to 10 CNN model checkpoints are saved at tensorboard-run/exp-LS-2016-3D-
example/models, that correspond to the lowest RMSE values achieved during train-
ing. The prediction script will be executed right after training is complete, to pre-
dict binding affinity values using the CNN model checkpoint with the best RMSE
error for the validation set.

#python3 pdb-batch-training.py --input_dir

"finalResults-batch-training" --output_dir

"finalResults-batch-training" --input_file

"msc-exp-LigScore3D-2016-experiment-example.csv" 2>&1

| tee experiments-console-output-example-2016-3D.txt

159

Appendix B. LigityScore User Manual

14. Start TensorBoard and browse to its portal (http://localhost:6006) to view
training progress. From another shell:

$ conda activate msc-ligityscore-cnn

$ cd ./ligityscore

$ tensorboard --logdir="tensorboard-runs"

To redirect your local port (6006) directly to your server’s port (6006) you can use
the following ssh command.

ssh -i <path-to-your-ssh-server-cert> -N -f -L

6006:localhost:6006 <username>@<your-server-ipaddress>

15. Collect results from finalResults-batch-training folder when training and predictions
are ready. The output file is named results-msc-exp-LigScore3D-2016-experiment-
example.csv, and includes the following results:

� Experiment name, description, and best training epoch

� Training Time

� Results in RMSE, MAE, SD, and R for the training, validation, Core-2013, and
Core-2016 datasets.

160

http://localhost:6006

C

Experiment Details

Tables C.1 and C.2 provide details on the parameters used for each experiment per-
formed on LigityScore1D and LigityScore3D respectively. Each experiment is assigned
an Exp ID, that is used to map the experiment details with the experiment results listed
in Tables 4.2, 4.3, and 4.4. The ’Experiment Details’ column describes the parameters
that differ from the baseline CNN models.

161

Table C.1: LigityScore1D experiments details with corresponding Exp ID matching the experiment results listed in 4 for Ta-
ble 4.2 and Table 4.3.

Exp ID Exp Shorthand Experiment Details

100 Baseline Baseline Models Full Details in Table 4.1.
101 mini-batch 25 Baseline with mini-batch of 25
102 mini-batch 15 Baseline with mini-batch of 15
103 mini-batch 10 Baseline with mini-batch of 10
104 mini-batch 5 Baseline with mini-batch of 5
105 kernel 3x3 Baseline model with kernel size of 3x3

106 4 Rotations, 512 Conv layer Baseline model with 4 rotations, and 512 dimension 5x5 filter with pooling.
Additional convolution layer was added due to increase in input size due to rotation padding.

107 8 Rotations, 512 Conv layer Baseline model with 8 rotations, and 512 dimension 5x5 filter with pooling.
Additional convolution layer was added due to increase in input size due to rotation padding.

108 LR 0.00005 Baseline model with learning rate increased to 0.00005
109 LR 0.0001 Baseline model with learning rate decreased to 0.0001
110 BatchNorm (BN) Baseline with BatchNorm added after each convolution layer before activation

111 InstanceNorm Baseline with batchnorm added after each convolution layer before activation
112 Dropout 0.6 0.6 0.5 Baseline model with slightly increased dropout on the FC layers.
113 Dropout 0.8 0.8 0.5 Baseline model with increased dropout on the FC layers.
114 L2 Reg 0.002 Baseline model with L2 regularisation increased to 0.002.
115 L2 Reg 0.004 Baseline model with L2 regularisation increased to 0.004.

116 FC dim - 512, 256, 64 Baseline model with FC connected layers changed number of neurons to 512, 256, 64.
117 FC dim - 500, 200 Baseline model with FC connected layers decreased to 2, and number of neurons changed to 500, 200.
118 FC dim - 1024, 512, 256, 64 Baseline model with FC connected layers increased to 4 and number of neurons changed to1024, 512, 256, 64
119 PIP Threshold 1.1 Baseline model using data model with PIP threshold factor of 1.1
120 PIP Threshold 1.25 Baseline model using data model with PIP threshold factor of 1.25

121 PIP Threshold 1.4 Baseline model using data model with PIP threshold factor of 1.4
122 PIP Threshold 1.5 Baseline model using data model with PIP threshold factor of 1.5
123 PIP Threshold 1.6 Baseline model using data model with PIP threshold factor of 1.6

124 PIP Threshold 1.4 w/Lipinski Baseline model using data model with PIP threshold factor of 1.4
with Lipinski drug-like filtering applied to PL complexes.

125 PIP Threshold 1.4 w/Max dist 30 Baseline model using data model with PIP threshold factor of 1.4
and PIP Generation Max distance of 30 A.

126 PIP Threshold 1.4 w/Max dist 40 Baseline model using data model with PIP threshold factor of 1.4
and PIP Generation Max distance of 40 A.

127 PIP Threshold 1.4 w/resolution0.5 Baseline model using data model with PIP threshold factor of 1.4
and PIP Generation resolution of 0.5.

128 BN–1-4* Baseline model with PIP threshold factor of 1.4, and BatchNorm after each Conv Layer.
129 IN—1-4* Baseline model with PIP threshold factor of 1.4, and InstanceNorm after each Conv Layer.

Exp ID Exp Shorthand Experiment Details

130 IN–1-4–Drop0-8* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and increased dropout at FC layers.

131 IN–1-25* Baseline model with PIP threshold factor of 1.25, and InstanceNorm after each Conv Layer.

132 IN–1-4–BS15* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and mini-batch of 15.

133 IN–1-4–r4* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
with added rotations at 90 degrees.

134 IN–1-4–r8* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
with added roations at 45 degrees.

135 IN–1-4–Cdrop0-1-all* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after all Conv Layers.

136 IN–1-4–Cdrop0-2-all* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.2 added after all Conv Layers.

137 IN–1-4–Cdrop0-1-mid* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after middle layer only.

138 IN–1-4–Cdrop0-1-mid–BS15* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
spatial dropout of 0.1 added after middle layer only, and mini-batch of 15.

139 IN–1-4–Cdrop0-2-mid* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.2 added after middle layer only.

140 IN–1-4–Cdrop0-1-all-r4* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after all Conv Layers, with rotations at 90 degrees.

141 IN–1-4–Cdrop0-1-all-r8* Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after all Conv Layers, with rotations at 45 degrees.

142 BN–1-4–Cdrop0-1-mid* Baseline model with PIP threshold factor of 1.4, BatchNorm after each Conv Layer,
and spatial dropout of 0.1 added after middle layer only.

143 IN–1-4–Cdrop0-1-mid–drop0.8–r4 Experiment 135 with increased dropout at FC layers.
144 IN–1-4–Cdrop0-1-mid–drop0.8–r4 Experiment 135 with increased dropout at FC layers, and 90 degree rotations.
145 IN–1-4–Cdrop0-1-mid–4ConvLayers Experiment 135 with 4 Conv Layers - 32, 64, 128, 256 (LigityScore1D only)

146 IN–1-4–Cdrop0-1-mid–5ConvLayers Experiment 135 with 5 Conv Layers - 32, 64, 128, 256, 512 (LigityScore1D only)

147 IN–1-4–Cdrop0-1-mid–3Convdouble Experiment 135 with 6 layers. Each filter is executed twice
(64, 64, 128, 128, 256, 256) (LigityScore1D only)

148 IN–1-4–Cdrop0-1-mid–4Convdouble Experiment 135 with 8 layers. Each filter is executed twice
(64, 64, 128, 128, 256, 256, 256, 256) (LigityScore1D only)

149 IN–1-4–Cdrop0-1-mid–r4–VGG16
–no-last-pool

Experiment 135 using VGG model, withouth last pooling layers and with added
spatial dropout. (LigityScore1D only)

150 IN–1-6–Cdrop0-1-mid–lr0-0001 Baseline model with PIP threshold factor of 1.6, InstanceNorm after each Conv Layer, and spatial
dropout of 0.1 added after middle layer only, and lr of 0.0001. (LigityScore1D only)

151 BN–1-4–Cdrop0-1-mid–lr0-0001 Baseline model with PIP threshold factor of 1.4, BatchNorm after each Conv Layer, and spatial
dropout of 0.1 added after middle layer only, and lr of 0.0001.(LigityScore1D only)

Table C.2: LigityScore3D experiments details with corresponding Exp ID matching the experiment results listed in 4 for Ta-
ble 4.4.

Exp ID Exp Shorthand Experiment Details

300 Baseline Baseline Models Full Details in Table 4.1.

301 BatchNorm (BN) Baseline with BatchNorm added after each convolution layer before activation
302 InstanceNorm (IN) Baseline with instancenorm added after each convolution layer before activation
303 IN–mini-batch 25 Baseline with instancenorm and mini-batch of 25
304 IN–mini-batch 15 Baseline with instancenorm and mini-batch of 15
305 IN–mini-batch 10 Baseline with instancenorm and mini-batch of 10

306 IN-no-padding Baseline with instancenorm added after each convolution layer before activation.
No padding is used to decrease size on FC input.

307 IN–rotations6 (r6) Baseline with Instancenorm and 6 rotations across x, y, x planes.
308 IN–LR 0.00005 Baseline model with Instancenorm and learning rate increased to 0.00005
309 IN–LR 0.0001 Baseline model with Instancenorm and learning rate decreased to 0.0001

310 IN–Dropout 0.8 0.8 0.5 Baseline model with Instancenorm and l slightly dropout increased to 0.8 on the FC
layers. Last FC layer dropout is kept at 0.5.

311 IN–FC dim - 4000, 500, 200, 1 Baseline model with Instancenorm and FC connected layers changed number of
neurons to 4000, 500, 200, 1

312 IN–FC dim - 6000, 2000, 500, 200, 1 Baseline model with Instancenorm and FC connected layers changed number of
neurons to 6000, 2000, 500, 200, 1

313 IN–kernel-3x3–no-padding Baseline model with Instancenorm and kernel size of 3x3. Padding is changed to 0 to
keep input to FC layer small.

314 IN–PIP Threshold 1.1 Baseline model with instancenorm and using data model with PIP threshold factor of 1.1
315 IN–PIP Threshold 1.25 Baseline model with instancenorm and using data model with PIP threshold factor of 1.25

316 IN–PIP Threshold 1.4 Baseline model with instancenorm and using data model with PIP threshold factor of 1.4
317 IN–PIP Threshold 1.5 Baseline model with instancenorm and using data model with PIP threshold factor of 1.5
318 IN–PIP Threshold 1.6 Baseline model with instancenorm and using data model with PIP threshold factor of 1.6

319 IN–PIP Threshold 1.4 w/Lipinski Baseline model with instancenorm and using data model with PIP threshold factor of 1.4
with Lipinski drug-like filtering applied to PL complexes.

320 IN–PIP Threshold 1.5 w/Lipinski Baseline model with instancenorm and using data model with PIP threshold factor of 1.5
with Lipinski drug-like filtering applied to PL complexes.

321 BN–PIP Threshold 1.4 Baseline model with batchnorm and using data model with PIP threshold factor of 1.4

322 IN–1-4–Drop0-8 Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and increased dropout at FC layers.

323 IN–1-4–BS15 Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and mini-batch of 15.

324 IN–1-4–r6 Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
with 6 added rotation along x, y, z planes.

Exp ID Exp Shorthand Experiment Details

325 IN–1-4–Cdrop0-1-all Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after all Conv Layers.

326 IN–1-4–Cdrop0-2-all Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.2 added after all Conv Layers.

327 IN–1-4–Cdrop0-1-mid Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after middle layer only.

328 IN–1-6–Cdrop0-1-mid Baseline model with PIP threshold factor of 1.6, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after middle layer only.

329 IN–1-4–Cdrop0-2-mid Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.2 added after middle layer only.

330 IN–1-4–Cdrop0-1-all-r6 Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after all Conv Layers, with 6 rotations along the x, y, z planes

331 Conv3D–IN–1-4 Baseline model with PIP threshold factor of 1.4, and InstanceNorm after each Conv Layer.
Conv layers use Conv3D modules. Used in LitgityScore3D only.

332 Conv3D–IN–1-4-Cdrop0-1-mid
Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.1 added after middle layer only. Conv layers use Conv3D module.
Used in LitgityScore3D only.

333 Conv3D–IN–1-4–Cdrop0-2-all
Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.2 added after all Conv Layers. Conv layers use Conv3D module.
Used in LitgityScore3D only.

334 Conv3d–IN–1-4–Cdrop0-2-all-BS15
Baseline model with PIP threshold factor of 1.4, InstanceNorm after each Conv Layer,
and spatial dropout of 0.2 added after all Conv Layers and mini-batch of 15.
Conv layers use Conv3D module. Used in LitgityScore3D only.

References

Kaggle: Merck molecular activity challenge, 2012. URL https://www.kaggle.com/c/

MerckActivity. https://www.kaggle.com/c/MerckActivity, Accessed Feb 8, 2019.

AWS: Cloud credits for research, 2020. URL https://aws.amazon.com/grants/.
https://aws.amazon.com/grants/, Accessed June 15, 2020.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/. tensorflow.org, Accessed 7 September, 2019.

Qurrat Ul Ain, Antoniya Aleksandrova, Florian D Roessler, and Pedro J Ballester. Machine-learning scoring
functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdisci-
plinary Reviews: Computational Molecular Science, 5(6):405–424, 2015.

Natalia Artemenko. Distance dependent scoring function for describing protein- ligand intermolecular
interactions. Journal of chemical information and modeling, 48(3):569–574, 2008.

Hossam M Ashtawy and Nihar R Mahapatra. A comparative assessment of ranking accuracies of con-
ventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
IEEE/ACM Transactions on computational biology and bioinformatics, 9(5):1301–1313, 2012.

Pedro J Ballester and John BO Mitchell. A machine learning approach to predicting protein–ligand binding
affinity with applications to molecular docking. Bioinformatics, 26(9):1169–1175, 2010.

Helen Berman, Kim Henrick, and Haruki Nakamura. Announcing the worldwide protein data bank. Na-
ture Structural & Molecular Biology, 10(12):980–980, 2003.

Fergus Boyles, Charlotte M Deane, and Garrett M Morris. Learning from the ligand: using ligand-based
features to improve binding affinity prediction. Bioinformatics, 36(3):758–764, 2020.

167

https://www.kaggle.com/c/MerckActivity
https://www.kaggle.com/c/MerckActivity
https://aws.amazon.com/grants/
http://tensorflow.org/

References References

Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. The rise of deep
learning in drug discovery. Drug discovery today, 23(6):1241–1250, 2018.

Tiejun Cheng, Xun Li, Yan Li, Zhihai Liu, and Renxiao Wang. Comparative assessment of scoring functions
on a diverse test set. Journal of chemical information and modeling, 49(4):1079–1093, 2009a.

Tiejun Cheng, Xun Li, Yan Li, Zhihai Liu, and Renxiao Wang. Comparative assessment of scoring functions
on a diverse test set. Journal of chemical information and modeling, 49(4):1079–1093, 2009b.

Tiejun Cheng, Qingliang Li, Zhigang Zhou, Yanli Wang, and Stephen Bryant. Structure-based virtual
screening for drug discovery: a problem-centric review. The AAPS Journal, 14(1):133–141, 2012. ISSN
1550-7416.

Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A Kalinin, Brian T Do, Gregory P
Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz, Michael M Hoffman, et al. Opportunities
and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141):
20170387, 2018.

Warren Lyford DeLano. Pymol, 2002.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

Wei Deng, Curt Breneman, and Mark J Embrechts. Predicting protein- ligand binding affinities using
novel geometrical descriptors and machine-learning methods. Journal of chemical information and computer
sciences, 44(2):699–703, 2004.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

James B Dunbar Jr, Richard D Smith, Chao-Yie Yang, Peter Man-Un Ung, Katrina W Lexa, Nickolay A
Khazanov, Jeanne A Stuckey, Shaomeng Wang, and Heather A Carlson. Csar benchmark exercise of
2010: selection of the protein–ligand complexes. Journal of chemical information and modeling, 51(9):2036–
2046, 2011.

Jacob D Durrant and J Andrew McCammon. Nnscore: a neural-network-based scoring function for the
characterization of protein- ligand complexes. Journal of chemical information and modeling, 50(10):1865–
1871, 2010.

Jean-Paul Ebejer, Paul W Finn, Wing Ki Wong, Charlotte M Deane, and Garrett M Morris. Ligity: A non-
superpositional, knowledge-based approach to virtual screening. Journal of chemical information and mod-
eling, 59(6):2600–2616, 2019.

Todd JA Ewing, Shingo Makino, A Geoffrey Skillman, and Irwin D Kuntz. Dock 4.0: search strategies for
automated molecular docking of flexible molecule databases. Journal of computer-aided molecular design,
15(5):411–428, 2001.

Emil Fischer. Einfluss der configuration auf die wirkung der enzyme. Ber, 27:2985–2989, 1894.

168

References References

Richard A Friesner, Jay L Banks, Robert B Murphy, Thomas A Halgren, Jasna J Klicic, Daniel T Mainz,
Matthew P Repasky, Eric H Knoll, Mee Shelley, Jason K Perry, et al. Glide: a new approach for rapid, ac-
curate docking and scoring. 1. method and assessment of docking accuracy. Journal of medicinal chemistry,
47(7):1739–1749, 2004.

Joffrey Gabel, Jérémy Desaphy, and Didier Rognan. Beware of machine learning-based scoring functions
on the danger of developing black boxes. Journal of chemical information and modeling, 54(10):2807–2815,
2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages
249–256, 2010.

Yoav Goldberg. A primer on neural network models for natural language processing. Journal of Artificial
Intelligence Research, 57:345–420, 2016.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Peter Gund. Three-dimensional pharmacophoric pattern searching. In Progress in molecular and subcellular
biology, pages 117–143. Springer, 1977.

Michael J Hartshorn, Marcel L Verdonk, Gianni Chessari, Suzanne C Brewerton, Wijnand TM Mooij, Paul N
Mortenson, and Christopher W Murray. Diverse, high-quality test set for the validation of protein-
ligand docking performance. Journal of medicinal chemistry, 50(4):726–741, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. pages 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Andrew L Hopkins. Predicting promiscuity. Nature, 462(7270):167–168, 2009.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks. Neural networks, 3(5):551–560, 1990.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

169

References References

José Jiménez, Miha Skalic, Gerard Martinez-Rosell, and Gianni De Fabritiis. K deep: protein–ligand abso-
lute binding affinity prediction via 3d-convolutional neural networks. Journal of chemical information and
modeling, 58(2):287–296, 2018.

Gareth Jones, Peter Willett, Robert C Glen, Andrew R Leach, and Robin Taylor. Development and valida-
tion of a genetic algorithm for flexible docking. Journal of molecular biology, 267(3):727–748, 1997.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. arxiv:1412.6980.

Peter Kirkpatrick and Clare Ellis. Chemical space. Nature, 432(7019):823, 2004.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

Greg Landrum. Rdkit: Open-source cheminformatics, 2020. URL http://www.rdkit.org. Accessed
April, 2020.

Andrew R Leach, Valerie J Gillet, Richard A Lewis, and Robin Taylor. Three-dimensional pharmacophore
methods in drug discovery. Journal of medicinal chemistry, 53(2):539–558, 2010.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Yann LeCun et al. Generalization and network design strategies. Connectionism in perspective, 19:143–155,
1989.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural
networks: Tricks of the trade, pages 9–48. Springer, 2012.

Hongjian Li, Kwong-Sak Leung, Man-Hon Wong, and Pedro J Ballester. Improving autodock vina using
random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger
data sets. Molecular informatics, 34(2-3):115–126, 2015.

Jin Li, Ailing Fu, and Le Zhang. An overview of scoring functions used for protein–ligand interactions in
molecular docking. Interdisciplinary Sciences: Computational Life Sciences, pages 1–9, 2019.

Yan Li, Li Han, Zhihai Liu, and Renxiao Wang. Comparative assessment of scoring functions on an updated
benchmark: 2. evaluation methods and general results. Journal of chemical information and modeling, 54
(6):1717–1736, 2014a.

Yan Li, Zhihai Liu, Jie Li, Li Han, Jie Liu, Zhixiong Zhao, and Renxiao Wang. Comparative assessment of
scoring functions on an updated benchmark: 1. compilation of the test set. Journal of chemical information
and modeling, 54(6):1700–1716, 2014b.

Yan Li, Minyi Su, Zhihai Liu, Jie Li, Jie Liu, Li Han, and Renxiao Wang. Assessing protein–ligand interac-
tion scoring functions with the casf-2013 benchmark. Nature protocols, 13(4):666, 2018.

170

http://www.rdkit.org

References References

Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, and Paul J Feeney. Experimental and compu-
tational approaches to estimate solubility and permeability in drug discovery and development settings.
Advanced drug delivery reviews, 23(1-3):3–25, 1997.

Zhihai Liu, Yan Li, Li Han, Jie Li, Jie Liu, Zhixiong Zhao, Wei Nie, Yuchen Liu, and Renxiao Wang. Pdb-
wide collection of binding data: current status of the pdbbind database. Bioinformatics, 31(3):405–412,
2015.

Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis for devel-
oping protein–ligand interaction scoring functions. Accounts of chemical research, 50(2):302–309, 2017a.

Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis for devel-
oping protein–ligand interaction scoring functions. Accounts of chemical research, 50(2):302–309, 2017b.

Zhonghao Liu, Yuxin Cui, Zheng Xiong, Alierza Nasiri, Ansi Zhang, and Jianjun Hu. Deepseqpan, a novel
deep convolutional neural network model for pan-specific class i hla-peptide binding affinity prediction.
Scientific reports, 9(1):794, 2019.

Junshui Ma, Robert P Sheridan, Andy Liaw, George E Dahl, and Vladimir Svetnik. Deep neural nets as a
method for quantitative structure–activity relationships. Journal of chemical information and modeling, 55
(2):263–274, 2015.

Andreas Mayr, Günter Klambauer, Thomas Unterthiner, and Sepp Hochreiter. Deeptox: toxicity prediction
using deep learning. Frontiers in Environmental Science, 3:80, 2016.

Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. Systematic evaluation of convolution neural network
advances on the imagenet. Computer Vision and Image Understanding, 161:11–19, 2017.

Garrett M Morris, Ruth Huey, William Lindstrom, Michel F Sanner, Richard K Belew, David S Goodsell, and
Arthur J Olson. Autodock4 and autodocktools4: Automated docking with selective receptor flexibility.
Journal of computational chemistry, 30(16):2785–2791, 2009.

Ingo Muegge. Pmf scoring revisited. Journal of medicinal chemistry, 49(20):5895–5902, 2006. ISSN 0022-2623.

Michael M Mysinger, Michael Carchia, John J Irwin, and Brian K Shoichet. Directory of useful decoys,
enhanced (dud-e): better ligands and decoys for better benchmarking. Journal of medicinal chemistry, 55
(14):6582–6594, 2012.

Duc Duy Nguyen and Guo-Wei Wei. Agl-score: Algebraic graph learning score for protein–ligand binding
scoring, ranking, docking, and screening. Journal of chemical information and modeling, 59(7):3291–3304,
2019a.

Duc Duy Nguyen and Guo-Wei Wei. Dg-gl: Differential geometry-based geometric learning of molecular
datasets. International journal for numerical methods in biomedical engineering, 35(3):e3179, 2019b.

Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geoffrey R Hutchi-
son. Open babel: An open chemical toolbox. Journal of chem informatics, 3(1):33, 2011.

Hakime Öztürk, Arzucan Özgür, and Elif Ozkirimli. Deepdta: deep drug–target binding affinity predic-
tion. Bioinformatics, 34(17):i821–i829, 2018.

171

References References

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

Janaina Cruz Pereira, Ernesto Raul Caffarena, and Cicero Nogueira dos Santos. Boosting docking-based
virtual screening with deep learning. Journal of chemical information and modeling, 56(12):2495–2506, 2016.

Javier Pérez-Sianes, Horacio Pérez-Sánchez, and Fernando Díaz. Virtual screening meets deep learning.
Current computer-aided drug design, 15(1):6–28, 2019.

Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch, Daniel M Greenblatt, Elaine C
Meng, and Thomas E Ferrin. Ucsf chimera—a visualization system for exploratory research and analy-
sis. Journal of computational chemistry, 25(13):1605–1612, 2004.

Matthew Ragoza, Joshua Hochuli, Elisa Idrobo, Jocelyn Sunseri, and David Ryan Koes. Protein–ligand
scoring with convolutional neural networks. Journal of chemical information and modeling, 57(4):942–957,
2017.

Ahmet Sureyya Rifaioglu, Heval Atas, Maria Jesus Martin, Rengul Cetin-Atalay, Volkan Atalay, and Tunca
Dogan. Recent applications of deep learning and machine intelligence on in silico drug discovery: meth-
ods, tools and databases. Brief. Bioinform, 10, 2018.

Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical
Laboratory, 1957.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Chao Shen, Ye Hu, Zhe Wang, Xujun Zhang, Jinping Pang, Gaoang Wang, Haiyang Zhong, Lei Xu, Dong-
sheng Cao, and Tingjun Hou. Beware of the generic machine learning-based scoring functions in
structure-based virtual screening. Briefings in Bioinformatics, 2020.

Jochen Sieg, Florian Flachsenberg, and Matthias Rarey. In need of bias control: Evaluating chemical data
for machine learning in structure-based virtual screening. Journal of chemical information and modeling, 59
(3):947–961, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-
nition. InICLR, 2015, 2014.

Nitish Srivastava. Improving neural networks with dropout. University of Toronto, 182(566):7, 2013.

Marta Stepniewska-Dziubinska. tfbio, 2020. URL https://gitlab.com/cheminfIBB/tfbio. Ac-
cessed June, 2020.

Marta M Stepniewska-Dziubinska, Piotr Zielenkiewicz, and Pawel Siedlecki. Pafnucy–a deep neural net-
work for structure-based drug discovery. stat, 1050:19, 2017.

172

https://gitlab.com/cheminfIBB/tfbio

References References

Minyi Su, Qifan Yang, Yu Du, Guoqin Feng, Zhihai Liu, Yan Li, and Renxiao Wang. Comparative as-
sessment of scoring functions: the casf-2016 update. Journal of chemical information and modeling, 59(2):
895–913, 2018.

C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object local-
ization using convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 648–656, 2015.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2):
455–461, 2010.

Tiziano Tuccinardi. Docking-based virtual screening: recent developments. Combinatorial chemistry & high
throughput screening, 12(3):303–314, 2009.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture networks: Maximizing quality
and diversity in feed-forward stylization and texture synthesis. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, July 2017.

Martin J Valler and Darren Green. Diversity screening versus focussed screening in drug discovery. Drug
discovery today, 5(7):286–293, 2000.

Izhar Wallach, Michael Dzamba, and Abraham Heifets. Atomnet: a deep convolutional neural network for
bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:1510.02855, 2015.

Cheng Wang and Yingkai Zhang. Improving scoring-docking-screening powers of protein-ligand scoring
functions using random forest. Journal of computational chemistry, 38(3):169–177, 2017.

Maciej Wójcikowski, Pedro J Ballester, and Pawel Siedlecki. Performance of machine-learning scoring
functions in structure-based virtual screening. Scientific reports, 7:46710, 2017.

Maciej Wójcikowski, Michał Kukiełka, Marta M Stepniewska-Dziubinska, and Pawel Siedlecki. Develop-
ment of a protein–ligand extended connectivity (plec) fingerprint and its application for binding affinity
predictions. Bioinformatics, 35(8):1334–1341, 2019.

Haiping Zhang, Linbu Liao, Konda Mani Saravanan, Peng Yin, and Yanjie Wei. Deepbindrg: a deep learn-
ing based method for estimating effective protein–ligand affinity. PeerJ, 7:e7362, 2019.

173

References References

Liangzhen Zheng, Jingrong Fan, and Yuguang Mu. Onionnet: a multiple-layer intermolecular-contact-
based convolutional neural network for protein–ligand binding affinity prediction. ACS omega, 4(14):
15956–15965, 2019.

174

	Introduction
	Virtual Screening
	Structure Based Virtual Screening
	Ligand Based Virtual Screening
	Scoring Functions

	Motivation
	Aims and Objectives
	Proposed Solution
	Evaluation
	Contributions and Main Results

	Document Structure

	Background & Literature Overview
	Structure Based Virtual Screening (SBVS)
	Scoring Functions

	Artificial Neural Networks
	Deep Learning
	CNN
	Dropout
	Stochastic Gradient Descent
	Weight Initialisation
	Batch Normalisation

	Evaluation Criteria
	CASF Benchmark

	Related Work
	Classical Scoring Functions
	Machine Learning to improve Scoring Functions
	Machine Learning Approaches
	Deep Learning Approaches
	Ligity Representation
	Recent ML approaches
	Influence on LigityScore

	Summary

	Methodology
	LigityScore Implementation Overview
	Baseline for the Study
	Dataset
	Handling Incorrect Molecule Files

	Pre-Processing Module
	Dataset Split

	PIP Generation
	Protein-Ligand Complex Representation
	LigityScore1D
	LigityScore3D

	Convolutional Neural Network Implementation
	Experiments
	Molecular Representation Optimisation
	CNN Hyperparameter Tuning
	Implementation Details

	Summary

	Results & Evaluation
	Pafnucy Replication Results
	Baseline Results
	LigityScore Results and Discussion
	LigityScore1D
	LigityScore3D

	LigityScore Best Performance Results
	Evaluation
	Evaluation with Pafnucy
	CASF Scoring Power Benchmark

	Summary

	Conclusions
	Achieved Aims and Objectives
	Critique and Limitations
	Future Work
	Final Remarks

	Media Content
	LigityScore Scripts

	LigityScore User Manual
	Experiment Details
	References

