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Abstract
Proteins perform different tasks within an organism such as regulation and sig-

nalling. Protein function is characterised through laboratory experiments or pre-
dicted using computational methods. Protein function is described using Gene On-
tology (GO) terms. Protein sequencing is the process of determining the amino
acid sequence that makes up the protein. Technological improvements in sequenc-
ing technology is making the process more accessible, leading to an ever-increasing
growth rate of protein databases. The low throughput of laboratory experiments
and increasing rate of proteins deposited in protein databases has made protein
function prediction (PFP) a central problem in computational biology. Domains are
independent structural units that have their own structural and function. Struc-
tural protein databases categorise protein using structural properties. CATH is a
structural database of protein domain using four levels of hierarchy.

This research applied machine learning (ML) techniques to improve PFP. The
protein function aspect investigated was molecular function. This research uses a la-
belled ML dataset consisting for GO terms, features extracted from protein sequence
and proportions computed from protein databases such as CATH and PFAM. The
problem was tackled by defining five experiments that were executed on Homo sapi-
ens and E. coli datasets. The model performance was measured using Fmax com-
puted as per Critical Assessment of Functional Annotation (CAFA) shared task
methodology. The first experiment applied automatic feature selection using four
different fitness methods based on Random Forest and Support Vector Machine.
The second experiment applied different neural network architectures to the datasets.
The third experiment applied cross validation to the automatic feature selection
process to assess dataset sensitivity in the feature selection process. The fourth ex-
periment investigated the amount of training data required by best performing ML
model for each species identified in the first experiment. The fifth experiment inves-
tigated the application of the best performing ML model for each species identified
in the first experiment to other species.

The methods selected in the first and second experiment were evaluated on
the CAFA3 targets. The RF with Gini node splitting criterion outperforms the best
CAFA2 methods by an Fmax of 0.01 for Homo sapiens and an Fmax of 0.16 for E. coli.
The cross validation of the automatic feature selection shows that E. coli models
were more sensitive to changes in the dataset with respect to Homo sapiens models.
The smaller E. coli dataset explains the sensitivity observed. The training dataset
size experiment shows that the models have similar performance levels with the
same amount of training data. The experiment that applied species-specific models
to different species confirms the intuition that models perform well on species of the
same domain, and that performance decreases as evolutionary distance increases.

The results show that features based on protein structure and proportions from
structural protein databases permit reliable PFP.
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1
Introduction

1.1 | ProblemDefinition
Proteins perform a variety of activities and functions in an organism. These functions
include acting as a catalyst to facilitate chemical reactions, enabling signalling, and per-
forming regulation functions inside the organism (Lesk, 2013).

Amino acids are small molecules composed of chains of carbon (C), hydrogen (H),
oxygen (O), nitrogen (N) and sulphur (S) atoms. There are twenty naturally occurring
amino acids. Proteins are assembled using chains of amino acids. The number of amino
acids in a protein varies from protein to protein. The sequence of the protein represents
the linear combination of amino acids that make up the protein. Protein sequences are
represented as strings of arbitrary length composed of characters from a twenty letter
alphabet representing amino acids.

The function of a protein is determined through laboratory tests performed on the
protein. These types of tests are referred to as “wet lab” or “laboratory curation”. This
process has low throughput and is both costly and laborious. Experiments follow a
scientific rigour and the outcome is a high-quality laboratory verified functionality of
the given protein.

The function of a protein can be predicted through computational approaches. These
approaches utilise different techniques such as sequence similarity, protein ancestry re-
lationship (homology) and interaction networks. These methods have higher through-
put but are less reliable. This area is actively researched with scientists using different
aspects to improve the performance of the predictor.

Annotations are used to attach functionality details to protein sequences in pro-
tein databases. Annotations include three components: the function description, evi-
dence code and method details such as journal article. The function is described using a
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Figure 1.1: Protein sequencing is the process used to determine the amino acids making
up the protein.

species agnostic vocabulary derived from a biological ontology such as Gene Ontology.
The evidence code describes the class of the method used to determine the described
functionality. Method details contain information related to evidence documentation
such as peer reviewed research defining the experimental conditions and the respective
outcomes.

Sequencing is the process of determining the amino acid sequence of a given protein
as illustrated in Figure 1.1. Technological improvements are making this process more
efficient and affordable. This gave rise to the number of protein sequences available
in biological databases. The ever-increasing number of proteins without functional an-
notations is highlighting the need for a fast-computational protein function prediction
method (Scaiewicz and Levitt, 2015).

UniProt Knowledgebase (UniProtKB) is a collection of biological databases that stores
protein details and functionality information, which include the sequence of the pro-
tein and originating species. The functional information includes functionality descrip-
tion using GO terms and details on the process used to determine the functionality
of the protein. UniProtKB database is divided into two categories, the manually an-
notated section “Swiss-Prot” and the automatically annotated category “TrEMBL”. Fig-
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Figure 1.2: Number of protein sequences in UniProtKB databases. Figure compiled us-
ing UniProtKB release statistics, available from UniProt FTP site1. The drop in TrEMBL
growth is linked to redundancy minimisation implemented on March 2015.

ure 1.2 shows the number of sequences in UniProtKB databases. From Figure 1.2, “Swis-
sProt” growth looks stationary in comparison with the sheer growth experienced by
“TrEMBL”.

The Critical Assessment of Functional Annotation (CAFA) challenge is a time-based
shared task with the purpose of assessing the state of protein function prediction meth-
ods. The CAFA shared task selects a set of proteins that lack functionality description
and asks the community to submit their predictions. The outcome of the CAFA shared
task is a rigorous performance evaluation of the different methods, on the proteins that
acquired functionality description in the meantime.

1ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases (Accessed 2018-12-28)
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1.2 | Motivation
The ability to map protein sequences to functionality is key to different areas in biology.
This knowledge would provide better understanding of organisms. In drug design,
it would enable medicinal to target specific proteins reducing side effects (Berger and
Iyengar, 2009). Grant (2011) reports that detailed knowledge of protein function will
permit precise interaction mapping of proteins and thus improve drug specificity.

Protein function prediction is a central problem within bioinformatics. To date, there
is no protein function prediction technique that can replace high-quality experimental
annotations (Koskinen et al., 2015). This research exploits bioinformatics computational
methods and machine learning techniques to predict protein function. Generated pre-
dictions (annotations) will be utilised to hint researchers about the functionality of a
given sequence.

Protein function prediction is a complex problem. Sequence similarity approaches
determine ancestry relationship (homology) between proteins through conserved re-
gions. This relation can be exploited to transfer functionality between proteins on the
basis that structural similarity suggests functional similarity. Paralogs tend to function-
ally diverge from their ancestors (Baxevanis and Ouellette, 2004). Homologs of moon-
lighting proteins may have none, a subset or all functions of the ancestor protein (Jeffery,
2015). Homology based methods effectiveness is hindered in the case of paralogs and
moonlighting proteins as the sequence relationship cannot be used to transfer protein
function.

1.3 | Scope
This dissertation uses computational methods to predict the molecular function of pro-
teins. The computational techniques will use a dataset of protein measurements and
output Gene Ontology terms describing molecular function. The performance of the
computational techniques will be assessed using CAFA metrics and compared against
CAFA methods.

The dataset used in this research was provided by Dr Jon Lees a member of the
Orengo Group at University College London (UCL). This dataset was generated by Dr
Lees using readings obtained from different bioinformatics tools used to extract struc-
tural information for the protein sequences. Further information was extracted from
biological databases and converted to different ratio values.

The scope of this dissertation is to identify putative features from the provided
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dataset that enable reliable protein function prediction. For this purpose, a number of
experiments with different Machine Learning (ML) techniques will be performed and
evaluated.

1.4 | Aims andObjectives
The aim of this research is to apply ML techniques to improve protein function predic-
tion. The defined aim will be achieved by fulfilling the following objectives:

1. Identify features correlated with protein functionality to enable reliable Protein
Function Prediction (PFP).

2. Investigate the application of neural network for PFP.

3. Investigate the sensitivity of feature selection.

4. Investigate the amount of training data required to train the ML model.

5. Investigate if models are transferable across species.

1.5 | Our Solution
In the initial phases of the dissertation, high-level discussions on bioinformatics with
two members of the Orengo Group at UCL2, namely Prof Christine Orengo and Dr
Jon Lees were held. Orengo Group is a research group that focuses on computational
techniques to classify protein through evolutionary relationships.

Within the protein structure, there are structural units called domains that are struc-
turally independent from the protein itself. Each domain has its own structure that can
be associated with a given function.

Structural databases classify proteins using the structural characteristics of the pro-
tein. CATH is a structural database that classifies protein using a hierarchical classifica-
tion. Proteins grouped at the same hierarchical level share common structural attributes.

Dr Jon Lees made available two datasets that were generated by the Orengo Group
at UCL for the CAFA shared task. The provided datasets are labelled and contain sev-
eral features for each protein. The features describe the protein in terms of attributes
from different structural databases including CATH and sequence structural properties.

2http://www.ucl.ac.uk/orengo-group (Accessed 2018-12-28)
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The training dataset contains ML features for the CAFA2 training dataset. Whilst the
evaluation dataset contains ML features for the CAFA3 targets.

The proposed solution will use the training dataset to determine the dataset fea-
tures that enable reliable protein function predictions. Species-specific datasets will be
extracted from the training dataset to train species-specific ML models. Different ML
techniques will be used to determine the most appropriate one for this data.

Four components will be developed: the pipeline component, the genetic algorithm,
the machine learning driver and evaluation implementation. The different modules will
be utilised to perform a number of experiments.

This work will utilise the two species-specific datasets to perform five experiments.
The first experiment uses the two datasets to perform automatic feature selection using
different ML techniques to evaluate features. The two ML techniques investigated will
be Random Forest (RF) and Support Vector Machine (SVM). The second experiment will
investigate the application of different Neural Network (NN) architectures to the two
datasets. The third experiment applies cross validation on automatic feature selection.
The fourth experiment determines the training dataset size required for the ML model.
The fifth experiment is a control experiment that applies a species-specific model to
predict functionality of protein of another species. Performance of the different ML
models will be evaluated using CAFA metrics.

Automatic feature selection will randomly select features from the feature space and
evaluate their performance using CAFA metrics. Through the ML wrapper part, the
same code can be utilised for both SVM and RF techniques. The system will log exe-
cution details, the features selected and the respective CAFA performance to facilitate
reporting.

The described architecture enables the required experimentation to cover the aims
defined in the outset. The ML methods will be evaluated using the CAFA shared task
methodology. The evaluation dataset has the ML features of the CAFA3 targets. At the
time of writing the results of the CAFA3 are not available. For this purpose this work
will evaluate the performance obtained on the CAFA3 targets against CAFA2 submis-
sions.
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1.6 | Document Structure
The rest of this dissertation is split into five sections.

Background and Literature Review The background section introduces the different
areas of relevance for this research. The related work section tackles the work performed
and the current state of this area of research. The discussion details the different ap-
proaches employed to tackle protein function prediction.

Methodology This chapter gives a detailed description on how the knowledge ac-
quired was utilised to tackle the problem. The software architecture section details the
aspects related to the solution itself. The discussion moves on to describe the provided
dataset. Another section describes the processing carried out on the dataset and how it
is utilised in the machine learning pipeline. The last section in this chapter describes the
experiments performed.

Results and Discussion This chapter reports the results of each experiment set in the
previous chapter. The results of each experiment are critically discussed with respect to
the objectives set for this research project.

Evaluation This chapter discusses the performance of the proposed solution against
CAFA benchmarks. The evaluation of the best methods, will be paper evaluated against
CAFA submissions.

Conclusions The concluding chapter summarises the research performed and dis-
cusses how it is pertinent to the problem tackled. This chapter reports briefly on the
achieved aims and objectives. Subsequent subsections summarise the critique of the
solution and reports on further work to be performed.

1.7 | Summary
This chapter introduced the problem area being tackled and the motivation for this
work, highlighting the need for such work in this area. With the clear goal defined
at the outset, the next chapter provides the required theory and to tackle the defined
problem.

7



2
Background & LiteratureOverview

This chapter introduces the areas of protein similarity, protein databases, protein func-
tionality, machine learning techniques, performance metrics and approaches to protein
function prediction. The first section provides the necessary background information
and introduces the techniques used in the different areas. The second section reports on
the work performed in the area of protein function prediction and the current state area
of research.

2.1 | Biological Classification
In biology organisms are categorised in different classes based on different characteris-
tics. A taxon is a set of organisms grouped at a specific taxonomic rank. The biological
classification defines different hierarchical taxonomic ranks, ranging from life to species.
The second level of the taxonomic rank is the domain, that categories organisms based
on the cell structure. The domain defines three categories:

� Bacteria, whose cells do not have a nucleus.

� Eukaryote, whose cells have a nucleus with DNA.

� Archaea, which are single cell organisms.

2.2 | Proteins
Proteins are composed of amino acid chains of arbitrary length. The amino acid se-
quence of the protein represents the flat representation of the protein. The chemical
attraction of the different atoms within the protein chain creates a bond that causes the

8
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protein to fold into a complex 3D structure. Protein folding is described in the four
structural levels (Lesk, 2013):

� Primary structure is the amino acid sequence.

� Secondary structure considers the conformation of the peptide chain in the protein
molecular. Many proteins have the conformation of α-helices or β-sheets.

� Tertiary structure considers pattern formed with the interaction between the α-
helices or β-sheets.

� Quaternary structure, for proteins with more than one subunit, considers the bind-
ing of monomers to the tertiary structure.

Structural biology studies proteins and investigates the 3D conformation of the pro-
tein. To determine the structure of a sequence, tools such as X-ray crystallography,
Nuclear Magnetic Resonance (NMR) and cryo-electron microscopy are utilised (Bruno
et al., 2017; Lafita et al., 2018). The ability to determine the structure of a protein for its
sequence is being actively researched (Moult et al., 2018).

The folding of the protein sequence into a 3D conformation gives the protein its func-
tionality (Hunter, 1993). Within the protein structure, there are structural units called
domains that are structurally independent from the protein itself. Each domain has its
own structure that can be associated with a given functionality. A domain can occur
in different proteins and species. Proteins can have multiple domains that enable the
protein to have multiple functions.

Domains are associated with one function. “Moonlighting” proteins are a special
class of proteins whereby a single domain performs multiple functions. Huberts and
van der Klei (2010) report that the functionality provided is in majority of the cases
dissimilar. Currently, this area is being actively researched to identify these types of
proteins and determine the reason for this mechanism.

Within an organism, genes are used to transcribe proteins that perform different
functions within the organism. The evolution of organisms might trigger gene muta-
tions in reaction to external factors during the duplication process. The modified gene
might produce a slightly modified protein called “paralog” (Baxevanis and Ouellette,
2004).

Since proteins are the building blocks of life, the ability to map a protein with a
specific function is key to understanding organisms. This knowledge is central to drug
development, whereby a pathology is studied, and molecules are identified to target
specific reactions. This process can be more expedite and effective if the exact behaviour

9
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Figure 2.1: Protein annotation process and evidence description using ECO ontology re-
produced from Chibucos et al. (2014). The top row, steps A-D illustrates steps for exper-
imental evidence. The bottom row, steps E-G detail the steps for electronic/automatic
evidence.

of all the proteins involved is known beforehand, ideally computationally (Dudley et al.,
2011). Moreover, since there are only a few thousand domains that re-occur in nature,
the problem is much simpler since it does not involve a search of all the combinations
of amino acids that make up the protein sequences.

2.3 | Protein Function Annotation
Annotations are the mechanism used to attach a protein function descriptions in pro-
tein databases. Through annotations the recorded functionalities of a protein are stored
using a defined protocol to facilitate retrieval.

The function of a protein can be determined using wet laboratory experiments and
computational methods. Protein function determined through wet laboratory experi-
ments that follow a rigorous methodology. Experiment findings are published in litera-
ture detailing the experiment setup and the outcomes observed. These results are stored
in the biological databases as annotations. Annotations originating from laboratory
experimentation are high-quality annotations as they are physically verified (UniProt
Consortium, 2017).

Computational methods are used to predict the function of a protein. These methods

10
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use different approaches to garner information from different data sources to improve
the performance of the model. Mazandu et al. (2017) report that prediction methods are
improving, however, their reliability is still not at par with experimental curation.

The quality of the annotation is denoted through evidence codes. In bioinformatics,
there are two main standards namely the Gene Ontology (GO) evidence codes (Con-
sortium, 2004) and Evidence Code Ontology (ECO) (Chibucos et al., 2014). Figure 2.1
illustrates the process of how annotations are generated and annotated using ECO. GO
evidence codes can be mapped to ECO codes using the information from GO website1.

A protein sequence can have multiple annotations for its domains. Each annotation
is independent of the other annotations describing the same or a different behaviour.
Through evidence codes, annotations can be filtered to consider only annotations origi-
nating from specific methods.

2.4 | Protein Homology
Protein homology defines an evolutionary relationship between proteins, such as a com-
mon ancestor (Pearson, 2013). This evolutionary link between protein can be utilised to
transfer protein function between related proteins (Hamp et al., 2013).

Two species can be linked together if they have common features, for example, adap-
tion to a specific environmental condition. In bioinformatics, gene homology is divided
into two subclasses, paralogues and orthologues. Paralogues are genes linked through
gene duplication whilst orthologues are genes related through speciation. Within the
evolutionary context, these two subclasses have different endings. Paralogues have
duplicate functionality and consequently, in the long term, they either diverge func-
tionality or are lost. On the other hand, orthologues tend to take the function of their
precursor and thus are conserved (Das et al., 2015a; Theißen, 2002).

Thornton et al. (1999) report that there are two approaches to structurally classify
proteins; the phylogenetic approach that considers the evolutionary link to other pro-
teins and phenetic approach that describes the structure and folds. Proteins grouped
via a homologous relation have similar 3D structures (Thornton et al., 1999).

Homology (ancestry) relationship between proteins is established using sequence
similarity measures. The degree of sequence similarity required to confirm homol-
ogy is generally defined as at least 30% identity, however this value filters out homo-
logues (Pearson, 2013). Sequence alignment tools such as BLAST report the expect value
(E-value) for each hit (Camacho et al., 2009). E-value defines the frequency that a match

1http://www.geneontology.org/page/guide-go-evidence-codes (Accessed 2018-12-28)
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is found by coincidence in the database (Tatusova and Madden, 1999). Pearson (2016) re-
ports that the E-value is more reliable to identify homologues and that a value less than
10−6 identifies a highly probable homology link. Homology detection is being tack-
led through different techniques such as sequence alignment, profile alignment, HMM
alignment and Machine learning based methods (Li et al., 2017b; Ponting and Russell,
2002). The performance of the different method varies Saripella et al. (2016) report that
the top performing methods are CSBLAST and HMMER3, both in terms of accuracy
and runtime.

Within bioinformatics, sequence alignment is used to determine the degree of sim-
ilarity between the two sequences. Altschul et al. (1990) identifies two types of align-
ment: global or local. Global alignment considers the overall length of the sequence,
whilst local alignment aims to find conserved regions within the sequence (Altschul
et al., 1990; Smith and Waterman, 1981).

Needleman and Wunsch (1970) proposed an algorithm that enables computational
detection of sequence relationship (homology). For the two sequences under consider-
ation, a matrix is built of size length(seq1) and length(seq2). The process of computing
the matrix values considers a ‘Scoring system‘, whereby matches contribute positively

P97929|BRCA2_MOUSE MPVEYKRRPTFWEIFKARCSTADLGPISLNWFEELSSE 38
O35923|BRCA2_RAT MTVEYKRRPTFWEIFKARCSTADLGPISLNWFEELFSE 38
P51587|BRCA2_HUMAN MPIGSKERPTFFEIFKTRCNKADLGPISLNWFEELSSE 38
consensus MpveyKrRPTFwEIFKaRCstADLGPISLNWFEELsSE

P97929|BRCA2_MOUSE APPYNSEPPEESEYKPHGYEPQLFKTPQRNPPYHQFAS 76
O35923|BRCA2_RAT APPYNTEHPEESEYKPQGHEPQLFKTPQRNPSYHQFAS 76
P51587|BRCA2_HUMAN APPYNSEPAEESEHKNNNYEPNLFKTPQRKPSYNQLAS 76
consensus APPYNsEppEESEyKpngyEPqLFKTPQRnPsYhQfAS

P97929|BRCA2_MOUSE TPIMFKERSQTLPLDQSPFREL.......GKVVASSKH 107
O35923|BRCA2_RAT TPIMFKEQSQTLPLDQSPFKEL.......GNVVANSKR 107
P51587|BRCA2_HUMAN TPIIFKEQGLTLPLYQSPVKELDKFKLDLGRNVPNSRH 114
consensus TPImFKEqsqTLPLdQSPfkEL.......GrvVanSkh︸ ︷︷ ︸

Residues absent in mouse and rat protein

Figure 2.2: Multiple sequence alignment of BRCA2 protein in mouse, rat and human.
Alignment data was generated using UniProtKB UniProt Consortium (2017) and ren-
dered using TEXshade.
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whilst for mismatches and gaps, a penalty factor contributes negatively. The similarity
of the two sequences is read out starting from the highest values and moving toward
zero using the path of the cells that contributed to the high value.

The work proposed by Smith and Waterman (1981) tackle a limitation of the method
proposed by Needleman and Wunsch (1970), namely the ability to tackle sequences
of arbitrary length and add statistical rigour. Smith and Waterman (1981) proposed
a different ‘Scoring system‘, whereby, matches contribute positively, mismatches and
gaps contribute negatively. Cells with a negative value are assigned a value of zero.
To determine alignments, the highest positive values in the matrix are highlighted and
traced back until the value reaches zero.

The process of aligning multiple sequences together is called Multiple Sequence
Alignment (MSA). Through Multiple Sequence Alignment (MSA), the common residues
of the sequences are determined. This is generally referred to as “consensus sequence”.
Figure 2.2 illustrates MSA performed on the BRA2 protein for three species; human,
mouse and rat. The consensus sequence shows that the three proteins have high se-
quence similarity, implying that they are related.

2.5 | Protein Databases
Protein sequences are deposited in protein databases including related information. Dif-
ferent databases focus on specific area of the protein and generally cross-reference each
other.

2.5.1 | UniProt
The UniProt protein database consists of three databases namely UniProtKB, UniParc
and UniRef. UniProt knowledge (UniProtKB) database is split in two sections, the man-
ually annotated section “Swiss-Prot” and the automatically annotated section “TrEMBL”
(UniProt Consortium, 2017). UniProt Archive (UniParc) retrieves protein sequences
from a number of databases and stores non-redundant proteins in UniProt archive. Each
protein sequence is assigned an immutable ID together with database cross reference in-
formation (Leinonen et al., 2004).

UniProt provides UniRef databases, that clusters all entries in UniProtKB and se-
lected UniParc entries using sequence identity. Each UniRef cluster, includes the best an-
notated sequence, common taxonomy and a list of all cluster members is provided (Suzek
et al., 2015). Uniref builds the clusters with 50%, 90% and 100% sequence identity to
generate UniRef50, Uniref90 and Uniref100 respectively.
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Figure 2.3: Number of sequences in UniProt databases. Figure compiled using UniPro-
tKB release statistics, available from UniProt FTP site2. The drop in TrEMBL growth
is linked to the implementation of Proteome Redundancy Minimisation (PRM) imple-
mented on March 2015.

Figure 2.4: Graphical representation of the first three levels of CATH, figure reproduced
from Orengo et al. (1997).

2 ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases (Accessed 2018-12-28)
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The number of protein sequences deposited in UniProt databases is constantly in-
creasing. This growth is illustrated in Figure 2.3, that reports the number of sequences
in the different UniProt databases through the years 2011 and 2018.

2.5.2 | CATH
CATH is a protein structure classification database. Within CATH, proteins are cate-
gorised using structural aspects to facilitate functionality mapping (Sillitoe et al., 2015).
Figure 2.4 illustrates the representation of the first three categorisation levels in CATH,
Class, Architecture and Topology. The four structural levels used in CATH are (Orengo
et al., 1997; Sillitoe et al., 2015):

� Class - is the general classification of the secondary structure, mainly α-helices,
main β-sheets, mixed α− β and few secondary structures.

� Architecture - the main architecture formed by the secondary structure.

� Topology - groups have the same overall fold.

� Homologous Superfamilies - groups proteins that have high structural and func-
tion similarly.

Proteins grouped within the same superfamily can indicate that they have some
common ancestor. Sillitoe et al. (2015) report, that within Homologous superfamilies,
both structural and functional variations at different degrees exist. For this purpose,
the functionality of the proteins is used to build “Functional Family” clusters. These
clusters are formed by using the protein functionality as a distance measure. FunFams
attempt to link functionality with the occurrence of a specific sequence (Sillitoe et al.,
2015).

CATH is publicly accessible through website3. The website provides a search facility
that permits proteins to be searched using UniProt accession ID or FASTA sequences.
The database browser enables browsing classification hierarchy and viewing details of
the selected superfamily.

CATH classification database clusters the fourth level (Homology) into functionally
coherent Functional Families (FunFams). CATH FunFams have been using in PFP and
ranked amongst the top ten methods in the Critical Assessment of Functional Annota-
tion (CAFA) shared task (Rentzsch and Orengo, 2013).

3https://www.cathb.info/ (Accessed 2018-12-28)
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Figure 2.5: Graphical representation of PFAM domain human ABL1 protein structure,
reproduced from Sammut et al. (2008)

2.5.3 | PFAM
PFAM is a database of protein domains (Bateman et al., 2000) which are grouped into
families. Each PFAM family entry consists of annotations, seed alignment, HMM profile
and a full alignment (Bateman et al., 1999). The seed alignment for the family is built
by performing multiple sequence alignment on verified members of that PFAM fam-
ily (Sonnhammer et al., 1997). The seed alignment is used to create the Hidden Markov
Model (HMM) profile for the family. The HMM profile is refined until it aligns all mem-
bers of the PFAM family (Sonnhammer et al., 1997). The full alignment is obtained by
aligning the UniProt SwissProt with the HMM alignment.

Domains in the same sequence can be classified into different PFAM families. Fig-
ure 2.5 shows the architecture of human ABL1 protein structure with PFAM classified
domains evidenced.

PFAM classification provides the data to map domain to functionality. Adding
PFAM data to a ML dataset will provide additional information based on a domain
to functionality mapping.

An overarching rule in PFAM is that families cannot have overlap. To tackle ho-
mology PFAM uses clans, where its members share a common ancestor (Finn et al.,
2006). The clan membership is determined by structural and functional similarity, se-
quence matches multiple family HMM and HMM profile similarity (Finn et al., 2006).
Sonnhammer et al. (1998) report that the HMM’s profiles can handle different levels of
conservations, enabling detection of remote homologues.
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2.6 | GeneOntology
The Gene Ontology (GO) provides a vocabulary to describe protein functionality. The
GO aims to address the issue that organism-specific databases classify proteins using a
classification or hierarchy oriented towards the target organism. Organism specificity
in describing proteins hinders the ability to ask organism independent questions (Con-
sortium et al., 2001). The idea of using a common methodology to describe functionality
is supported by the fact that genes are shared amongst life kingdoms (Ashburner et al.,
2000).

The Gene Ontology (GO) initiative by the Gene Ontology Consortium has three
main aims (Consortium, 2004):

1. Develop ontologies to describe molecular biology.

2. Apply GO ontologies to biological databases.

3. Publish ontologies to enable universal access.

GO defines three non-overlapping ontologies (Ashburner et al., 2000; Consortium, 2004;
Consortium et al., 2001):

1. Biological Process describes the series of events or molecular functions.

2. Cellular Component describe locations, at the level of subcellular structures and
macromolecular complexes.

3. Molecular Function describes the basic abilities at the molecular level.

GO is defined as a Directed Acyclic Graph (DAG) whereby a vertex represents a term
and an edge denotes the relationship between the terms. In the DAG, a vertex represent-
ing a term can have multiple parents. GO terms are structured to support “is_a” (sub-
type of), “part_of” (subcomponents of parent), regulates (necessarily-regulates), “posi-
tively_regulates”, “negatively_regulates” and “has_part” (necessarily part of) relation-
ships. The GO follows the “True Path Rule” whereby the path between term and the on-
tology root must always be true (Consortium, 2004; Consortium et al., 2010). Figure 2.6
illustrates the GO DAGs’ generated for three GO terms within different ontologies.

The “True Path Rule” ensures that all GO terms always have a path to the ontology
root. Example, referencing Figure 2.6, the true path of annotation GO:0022402, is the
term set GO:0008150, GO:0009987, GO:0007049, GO:0022402.
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Figure 2.6: Gene Ontology Direct Acyclic Graph of different terms. Figure adapted from
QuickGO website4.

2.7 | Machine Learning
This section gives on overview of the Machine Learning (ML) techniques that will be
utilised in this dissertation. For each technique namely Random Forest (RF), Support
Vector Machine (SVM) and Neural Network (NN), the high-level concepts and under-
lying principles are detailed.

Computer programs require programmer input to develop code to perform a spe-
cific task. In machine learning, the algorithm learns patterns from data to enable it to
make decisions on unseen data based on what it learnt. Machine learning is divided
into three main types, supervised, unsupervised and reinforcement learning. In super-
vised learning, the training data is labelled, whilst in unsupervised learning, the data is
not labelled.

In unsupervised learning the expected outcome is not available. For this purpose,
a number of techniques are utilised to extract knowledge from the dataset. The associ-
ation technique computes the probability of the co-occurrence of feature sets. Another

4https://www.ebi.ac.uk/QuickGO/ (Accessed 2018-12-28)
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technique is clustering, whereby the samples are mapped to a feature space and grouped
in clusters in a distance measure. There are different types of clustering such as agglom-
erative and spectral clustering (Murphy, 2012).

In supervised learning, the training data consists on N sample maps, where each
sample consists of a number of inputs (features) {x1, x2, ..xn} mapped to a response
variable (output) y. In classification problems, the response variable y is an element
of a finite set of classes y ∈ {C1, .., Ck} where k is the number of classes. The value
of k defines the problem type when k is equal to 2 the problem is defined is a binary
classification problem, otherwise, it is a multiclass classification problem. In case y is a
real number the problem is a regression problem (Murphy, 2012).

Reinforcement Learning (RL) is a branch of ML that tackles autonomous systems.
The system operates in an environment and is trained through a system of rewards
and penalties. The main aim is the maximisation of cumulative rewards. An important
aspect in RL is that the software system must engage in exploring the environment to
have a strategy between known rewards and the unknown states (Mitchel, 1997).

The complexity of the dataset is not a function of size but of dimensionality (Breiman
et al., 1984). Highly dimensional datasets are demanding in terms of processing memory
and training time (Bolón-Canedo et al., 2015). Bolón-Canedo et al. (2015) refers to work
carried out by Richard Bellman where the term “curse of dimensionality” is used to de-
scribe such circumstances. These datasets are tackled via “feature selection” or “feature
extraction” (Bolón-Canedo et al., 2015). In “Feature selection” selected features that are
deemed to be “good” are kept discarding the rest, reducing the size of the dataset. In
“feature extraction” the input features are used to generate a new dataset. The new
dataset maps the input features into intermediate features reducing dimensionality in
the process. ML techniques are utilised on the new dataset.

2.7.1 | Random Forest
The process of determining the appropriate splits and which variables to consider is
not straight forward. Quinlan (1986) proposed Iterative Dichotomiser 3 (ID3), that iter-
atively selects a random subset of features and builds a decision tree. The effectiveness
of the tree is evaluated against all the training set. In case there are incorrect responses,
more features are added.

ID3 computes two metrics Entropy (uncertainty) as per Equation 2.1 and Informa-
tion Gain as defined in Equation 2.2 to determine the node split criteria. The dataset
feature that contributes most to the information gain is selected as the node split crite-
ria.
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Figure 2.7: Decision Tree representation, including the Gini value and the samples at
each node. Figure generated using Scikit learn.

Figure 2.8: Decision Tree feature space partitioning.
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H(S) = ∑
x∈X
−p(x, S)log2(p(x, S)) (2.1)

IG(S) = H(S)−∑
t∈T

p(t, T)H(t) (2.2)

where:

S = the data on which entropy will be calculated.
X = the set of classes in dataset S.
p(x, S) = the proportion of class x in dataset S.
H(S) = the entropy value of dataset S.
T = the set of classes in dataset S after the split.
p(t, T) = the proportion of class t in dataset T.
H(T) = the entropy value of dataset T.

The work on ID3 decision trees was improved in C4.5 and C5. C4.5 improves ID3,
to handle regression and support post tree creation pruning (Hssina et al., 2014). C5
is second iteration of ID3 that improves scalability and prediction performance due to
improved tree creation rules (Hssina et al., 2014).

Breiman et al. (1984) proposed Classification And Regression Trees (CART), that
builds a binary tree with the node conditions determined from the training dataset.
The resulting tree partitions the decision space into rectangles that are mapped to the
response variable y. Figure 2.7 illustrates a decision tree generated for a binary classi-
fication problem whilst Figure 2.8 illustrated how the criteria selected by the decision
tree partition the feature space.

The process of building the tree can result in a large tree that does not generalise
well. CART determines the appropriate size of the tree through cross validation. The
tree is pruned using weakest link pruning recursively (Breiman et al., 1984).

Within CART, the node splitting criterion is based on Gini, which as defined in Equa-
tion 2.3. Gini impurity measures the mis-classification rate of each class. The feature that
contributes most the node impurity is selected as the splitting criteria.

IG(S) = 1− ∑
x∈X

p(x, S)2 (2.3)

where:

S = the data on which Gini index will be calculated.
X = the set of classes in dataset S.
p(x, S) = the proportion of class x in dataset S.
IG(S) = the entropy value of dataset S.
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The built decision tree using the defined process increases purity as the tree depth
increases. Noisy training data can lead to a different tree topology; however, the pre-
dictive performance of the tree is almost the same (Breiman et al., 1984). Breiman (1996)
defines classification and regression trees as unstable because a small change can result
in a large change in the misclassification rates.

Work carried out by Breiman (1996) aims to improve the performance of classifiers
through “Bootstrap Aggregating” or “Bagging”. The main idea behind “Bagging” is to
train a number of classifiers on independent datasets and aggregate the prediction re-
sults through voting for classification or average in regression. “Bagging” is performed
as follows:

� From the training set generate DSn training sets by sampling the complete training
dataset with replacement.

� Train n classifiers using training dataset DSn.

To perform predictions, each classifier generates the prediction based on the tree built.
The final of the Bagging classifier is determined through majority voting (Breiman,
1996).

Ensemble methods such as Bagging uses voting to aggregate multiple classifiers in
one, improving accuracy. “Random Forest (RF)”, presented in Breiman (2001), builds
on Bagging to provide several advantages. Breiman (2001) reports that RF is faster to
train, relatively more resilient to outliers, computes internal performance metrics based
on “unseen” samples (out of bag error) and that training can be parallelised. RF tack-
les node splits differently from Bagging as at each split it randomly selects a subset of
features to consider for the split (Breiman, 2001).

2.7.2 | Support VectorMachines
Support Vector Machine (SVM) is a classifier that uses a hyperplane to separate classes
in a two-dimensional space. Training data is used to determine the position of the hy-
perplane, as per Figure 2.9. Two linearly separable classes can be separated using a
linear plane. The edge samples of the two classes are considered to determine the place-
ment of the hyperplane. The samples selected determine the position of the hyperplane
and are called support vectors. The support vectors are the red data points illustrated
in Figure 2.9.
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Figure 2.9: SVM hyperplane positioning

The hyperplane is defined by Equation 2.4, such that g(x) > 0 is true of one class
and g(x) < 0 is true of the other (Konstantinos and Sergios, 2008).

g(x) = wTx + w0 = 0 (2.4)

where:

wT = weight vector.
x = input training vector.
w0 = the bias parameter.

Multiple solutions exist however SVM improves generalisation of the model by in-
creasing the distance between the edges through a margin. The edges of the margin
are used to determine the classes, when Equations 2.5 is true the class is w1, and, when
Equations 2.6 is true the class is w2. For a given point the perpendicular distance from
the hyperplane is computed using Equation 2.7.

g(x) = wTx + w0 ≥ 1, ∀x ∈ w1 (2.5)

g(x) = wTx + w0 ≤ −1, ∀x ∈ w2 (2.6)

z =

∣∣g(x)
∣∣

‖w‖ (2.7)

The minimum distance of the sample of a sample of class w1 from the hyperplane is
1
‖w‖ . Likewise, the distance of minimum distance of a class w2 from the hyperplane is
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also 1
‖w‖ . Therefore, the minimum distance between the samples is as defined in Equa-

tion 2.8. To improve the generalisation of the model, this distance must be maximised
by, maximising 2

‖w‖ or minimising‖w‖. The minimisation of‖w‖ is rewritten as 1
2‖w‖

2.

s(w1, w2) =
1
‖w‖ +

1
‖w‖ =

2
‖w‖ (2.8)

SVM are also applicable on non-separable classification problems. Slack variables
are introduced to relax the classification condition for each class as shown in Equa-
tions 2.9 and 2.10. The value of the slack variable is between zero and one for correctly
classified samples and less than zero for incorrectly classified samples enclosed between
the hyperplane and the support vector of the other class. The minimisation of ‖w‖ is
rewritten as per Equation 2.11 (Konstantinos and Sergios, 2008).

g(x) = wTx + w0 ≥ 1− ξ, ∀x ∈ w1 (2.9)

g(x) = wTx + w0 ≤ −1− ξ, ∀x ∈ w2 (2.10)

minimise ‖w‖ = 1
2
‖w‖2 + C

N

∑
i=1

ξi (2.11)

where:

ξx = slack variable for class x.
N = number of classes in training dataset.
C = influence control variable.

Linear SVM’s enable classification of linearly separable classes thus non-linear re-
lationship cannot be handled. To use SVM’s on non-linearly separable classes, the re-
lationship must be linearised and subsequently linear SVM’s used to tackle the prob-
lem (Shawe-Taylor and Cristianini, 2004). The mapping is performed using a kernel
function that maps x → Φ(x) (Konstantinos and Sergios, 2008). The inner product with
the kernel function is generally referred to as the “kernel trick”. Figure 2.10 illustrates
the mapping of non-linear data to linear using the kernel trick.

SVM can be extended to handle multiclass classification using either One vs Rest
(OVR) or One vs One (OVO). OVR trains a classifier for each class with the negative
samples being the labels of the other classes (Bishop, 2009). OVO tackle multiclass
problem differently whereby a classifier is trained against each class, a n class problem
requires n(n− 1)/2 classifiers (Bishop, 2009).
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Figure 2.10: Application of SVM classifier for non-linearly separable classes. Data points
are multiplied with the φ to linearise the relation between the classes. Figure reproduced
from Shawe-Taylor and Cristianini (2004)
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Figure 2.11: Neuron architecture
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2.7.3 | Neural Networks
The basic building block of Neural Network (NN) is the neuron. The neuron has an ar-
bitrary number of inputs, for each input, there is a corresponding weight, a bias and has
a single output as illustrated in Figure 2.11. To determine the output value, the neuron
considers all its inputs, their corresponding weights and bias as per Equation 2.12.

Z = θ(
N

∑
i=1

xiwi + b) (2.12)

where:

Z = output of the neuron.
N = number of neuron inputs.
xi = input from previous layer.
wi = weight for given connection.
θ = the activation function of the neuron.
b = bias of the neuron.

The activation function determines the output of the neuron, typical examples in-
clude sigmoid, hyperbolic tangent (Bishop, 2009). Neurons are organised in networks
to mimic the learning models found in nature (Mitchel, 1997). The architecture consists
of several interconnected neurons, organised in layers such as in Figure 2.12.

...

...
...

I1

I2

I3

In

H1

Hm

O1
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Input layer Hidden layer Output layer

Figure 2.12: Neural network architecture
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In the training phase, the input weights are adjusted to minimise network error. The
training optimiser implements algorithms to reduce the network error. For classification
problems the error is computed using cross entropy as defined in Equation 2.13.

R(θ) =
K

∑
k=1

N

∑
i=1

yiklog fk(xi) (2.13)

where:

R(θ) = cross entropy.
K = number of neurons in the network.
N = number of neuron inputs.
yik = target output of the neuron.
fk = activation function of the neuron k.
xi = input vector.

The computed error is propagated back so that the error of each neuron is deter-
mined. The weight adjustments are gradually adjusted, the adjustment rate is gov-
erned by the learning rate. This value determines the amount of error that is considered
when adjusting the weights. A high learning rate value will cause the network to move
rapidly on the error surface but will not find the minima due to large adjustments. On
the other hand, small learning rate values will cause an increase in the number of epochs
required for training (Orr and Müller, 1998).

Gradient descent is one of the algorithms used in training that aims minimise er-
ror. This area is being actively researched especially for deep networks. The traditional
approach in gradient descent is to evaluate the gradient after each epoch and apply ad-
justments limited by the learning rate to the weights (Ruder, 2016). Stochastic gradient
descent does not consider all the training data in the epoch but takes random samples
for the training dataset. Ruder (2016) reports that this technique reduces training time
due to a small training dataset but a decay in the learning rate increase the likelihood
of finding the minima. A further improvement on gradient descent uses mini-batch to
speed up training. The training dataset is shuffled at each epoch and mini batches are
extracted. For each batch, the gradient is computed, and weights are adjusted (Ruder,
2016).

Active research on techniques to speed up identification of global minima resulted
in different proposals. Ruder (2016), reports that Ning Qian proposed momentum to
incorporate a fraction of the previous adjustment in the current, to escape local min-
ima. Kingma and Ba (2014) proposed the ADAM optimiser (ADAptive Moment) that
incorporates adaptive momentum and variable learning rates to speed up the learning
process.
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The input vector of the output layer of a NN is a set of discrete values z. Some
applications of NN require the prediction confidence. For this purpose, vector z can be
converted to a vector of probabilities using the SoftMax function. The properties of the
output vector are that the summation of the vector is equal to one and that each value
is between zero and one (both values inclusive) (Goodfellow et al., 2016). The SoftMax
function is defined as per Equation 2.14.

So f tMax(z)i =
exp(zi)

∑
j
1 exp(zj)

(2.14)

where:

z = the vector to discrete values to be converted to probabilities.
i = the current element in z.
j = the size of vector z.

2.7.4 | Machine Learning Performance Evaluation Criteria
The performance classifier must be evaluated using metrics that permits comparison
against previous runs or other systems. The output of a classifier can be categorised
using a confusion matrix as shown in Table 2.1.

Actual Value

Positive Negative

Predicted Outcome
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 2.1: Machine Learning results types

Accuracy, as defined in Equation 2.15 determines the number of correct predictions
of a classifier. This metric can be misleading on a skewed dataset and in cases where the
classifier performs well for the over-represented class (Kubat, 2015).

Precision (Pr) defined in Equation 2.16, returns the percentage of correctly predicted
positive samples out of the predicted positive samples. Recall (Rc) defined in Equa-
tion 2.17 returns the percentage of actually positive samples to be correctly classified.
To facilitate performance comparison, precision and recall can be combined in a sin-
gle metric, Fmax using Equation 2.18 (Kubat, 2015). The balanced Fmax (β = 1) is the
harmonic mean of precision and recall values.
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Acc =
NTP + NTN

NTP + NTN + NFP + NFN
(2.15)

Pr =
NTP

NTP + NFP
(2.16)

Rc =
NTP

NTP + NFN
(2.17)

Fmax =
(β2 + 1) ∗ Pr ∗ Rc

β2 ∗ Pr + Rc
(2.18)

where:

NTP = number of positive samples correctly classified
NTN = number of negative samples correctly classified
NFP = negative samples classified as positive samples
NFN = positive samples classified as negative samples
β = β < 1 prioritise recall, β > 1 prioritise precision, β = 1 harmonic mean.

2.7.5 | Cross Validation
In ML generalisation performance describes the performance of the model on unseen
data. A model that performs poorly on unseen data does not generalise well. To es-
timate the ability of the ML model generalisation, a benchmark on unseen data is re-
quired.

To determine the generalisation of a model, the labelled dataset is split into two
datasets, the training and testing dataset. The training dataset is used to train the ML
model whilst the test dataset is used to determine the performance of the ML model. The
labels of the test dataset are the true values, whilst the predicted values are outputted
by the ML model based on the testing data. The true and predicted values are used to
determine the performance of the model.

EPEk(x0) = E[Y− f̂k(x0)]
2 (2.19)

= σ2 + Bias2( f̂k(x0)) + Varτ( f̂k(x0)) (2.20)

= Irreducible Error + Bias2 + Variance (2.21)

where:

f̂k(x0) = the model fitted to map fk(x0)
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Figure 2.13: Prediction error in relation to ML model complexity, figure reproduced
from Hastie (2009).

The expected prediction error can be decomposed in three components are per Equa-
tions 2.19, 2.20 and 2.21 (Hastie, 2009). The first component is the irreducible error that
is the error part that cannot be controlled. The second component is the Bias, which is
defined as the amount by which the mean predictor estimate differs from the mean true
value. The third component is the variance, which is defined as the deviation of the
predicted output from its mean value.

The complexity of the ML model governs the richness of the model. The richer
the model, the more information from the training data can be extracted. The down-
side of this is that the model performs exceptionally well on the training data but does
not generalise well. Figure 2.13 illustrates the general relation between the ML model
complexity and prediction error. Low complexity modes tend to have high bias as the
information extracted from the training data is limited. On the other hand, high com-
plexity models adapt to the training data too much thus causing the training perfor-
mance (shown in cyan) to be good and generalise poorly (show in red). The optimal
model complexity for a given problem is a trade-off between bias and variance which is
identified by experimentation.

Cross validation is a technique used to estimate the prediction error. The leave one
out cross validation estimates the prediction error based on the left-out data partition.
The application of the leave one out cross validation is illustrated in Figure 2.14. The
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Labelled dataset

Learn dataset (L) Test dataset (T)

Train dataset (Tr)
Validation
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Train ML
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Mv perform
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Store in Pv the
performance
of model Mv

Train ML
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Using model
Ml perform
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performance
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Train and test
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Figure 2.14: ML cross validation and training. The labelled dataset is split into the learn
L and test T datasets. The learn dataset is in turn split into train (Tr) and validation (Vl)
datasets that are used for cross validation. The Tr dataset is used to train the model and
predictions are generated for dataset (Vl). Dataset (L) is used to train the model and
generate predictions for the test (T)dataset. The performance of the models on datasets
(Vl) and (T) must be similar. Figure adapted from Simon (2007).
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Fold 1

Fold 2

Fold 3

Fold k

Training dataset

Training Validation

Figure 2.15: K-fold cross validation dataset splits across the different folds. Each fold
partitions the training set in two non-overlapping datasets used to train and validate
ML model performance.

labelled dataset is split into two partitions, the learn (L) and test (T) datasets. The learn
dataset is split into training (Tr) and validation (Vl) datasets as illustrated in the top part
of Figure 2.14. The ML model Mv is trained on the train dataset (Tr) and evaluated on
the validation (Vl) dataset. Subsequently the ML Ml is trained on the learn (L) dataset
and evaluated on the test (T) dataset. Both classifier Mv and Ml have been evaluated on
dataset that were unseen by the classifier. The ML classifier is performing as expected
when the performance of the two classifiers is similar.

The leave one out cross validation relies on a single dataset partition and is suscep-
tible to variance (Hastie, 2009). A more robust way to estimate the prediction error is to
utilise different validation partitions and use the mean value as the estimated error. An-
other advantage of this approach is that generally the amount of labelled data available
is limited and does not permit generating three datasets to assess model performance.

The k-fold cross validation is a type of cross validation that splits the training dataset
into K splits. K training iterations are performed each time using different training and
validation partitions as illustrated in Figure 2.15. The estimated prediction performance
of the classifier is computed as the mean error computed across the K iterations. The
mean value across all folds ensures that the value obtained is not an outlier obtained
from a specific split (Hastie, 2009).

K-fold cross validation technique requires K training iterations, increasing the train-
ing time and resources required to train the classifier. Each iteration uses (K-1) partitions
for training and one partition for validation as illustrated in Figure 2.15 (Hastie, 2009).
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2.8 | Feature Selection
Feature selection is the process of selecting features that have correlation with the out-
put variable. A training dataset has several features that describe the instance and the
output variable. Correlation is a measure of association between the feature being inves-
tigated and the output variable. The correlation between variables can be strong, weak
or irrelevant. Strongly correlated values can be used to can be used to predict each other.
Weakly correlated variables contribute limited information about the other variable. Ir-
relevant correlation implies that the variable is adding redundant information or just
noise (Bonev, 2010).

Feature selection entails selection process to identify the subset of strongly correlated
features to be used in ML. The reduced subset of features increases the ML efficiency
as the problem complexity (dimensionality) is reduced. Another key aspect of feature
selection is that discarded features are not considered by the ML model, thus do not
need to be captured or computed/generated.

2.8.1 | Manual Feature Selection
Manual feature selection requires manual intervention to determine the features to use
in ML. A feature is selected on domain knowledge or on the outcome of statistical
analysis on the data. The statistical analysis considers aspects such as low variance
whereby a feature that has the same value for a high percentage of the data (Li et al.,
2017a). Typical examples of low variance fields are flags associated with processes used
to generate the data or flags in data related to categories.

Expert domain knowledge is central in manual feature selection. Through expert
domain knowledge, dataset features are understood in depth and non-trivial links be-
tween features is learnt. Using the expert knowledge, noisy and low information fea-
tures can be discarded.

Manual feature selection can utilise ML techniques to identify features that have
high correlation with the output variable. Viewing the model of build decision tree can
evidence important features.

2.8.2 | Automatic Feature Selection
In machine learning, dataset features are used to train a model which in turn, makes pre-
dictions based on the same features. The input feature set effects the predictive power
of the model built. An exhaustive search for the best features in a dataset with n features
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Feature space error surface

Figure 2.16: Error surface across the feature space.

requires attempting 2n combinations. GA is an optimisation technique that explores the
feature space to find the best feature set mimicking biological evolution (Mitchel, 1997).

The error surface of a ML classifier needs to be mapped out through experimen-
tation. The error surface consists of a number of maxima and minima. Figure 2.16
illustrates a typical error surface for a group of features. A difference between local and
global minima is that the global minima is the lowest possible point on the error surface.
A local minimum is a minimum on the error surface, that is not the global minimum.
Genetic Algorithm (GA) performs feature space exploration to identify a minimum. The
GA does not guarantee finding the global minima (Sastry et al., 2014).

Figure 2.17 illustrates in detail the workings of a typical GA. The GA chromosome
pool is evaluated using the fitness function (Haupt and Haupt, 2004). This function is
agnostic from the GA implementation. The fitness score is used the GA to identify best
performing chromosomes. Selecting the best performing chromosomes increases the
likelihood of producing better off springs (Haupt and Haupt, 2004).

The best chromosomes are crossed over and mutated to generate off springs which
are in turn evaluated using the fitness function. Through this mechanism the GA intro-
duces randomness that enables it to explore different regions of the features space.

Chromosome crossover requires two source chromosomes to generate two destina-
tion chromosomes. Sections of the source chromosomes are taken and assembled into
new chromosome using pre-define masks. The masks define the segment to be copied
to the target chromosome. Mitchel (1997) describes three crossover masks: single point,
two point and uniform crossover masks. The variations between these masks is the
offset and number of bits copied (Haupt and Haupt, 2004; Mitchel, 1997). Figure 2.18,
illustrates the single point crossover.
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Figure 2.17: Genetic Algorithm flow chart. The flow chart illustrates the iterative process
of generating a chromosome population, checking fitness. The best chromosomes are
bred and mutated and re-evaluated. This process is repeated until the required fitness
is reached.

Figure 2.18: Genetic algorithm single point crossover and mutation, figure reproduced
from Comellas and Ozón (1995)
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Chromosome mutations introduces random changes on the chromosome to explore
the feature space. The mutation process entails flipping bits are pre-defined positions in
the chromosome (Haupt and Haupt, 2004; Mitchel, 1997). Figure 2.18 illustrate a single
bit mutation.

The termination criteria of the GA are an arbitrary decision that considers two cri-
teria. The first criterion is the definition of a fitness threshold. This threshold requires
knowledge of performance figures achievable with the dataset being utilised. The sec-
ond criterion is a pre-defined number of epochs to be executed. This parameter controls
the maximum number of population generations that will be evaluated.

Each chromosome in the pool is evaluated using the provided “cost” or “fitness”
function (Haupt and Haupt, 2004). The fitness function is used to compute the fit-
ness value for each chromosome. The GA determines whether the termination crite-
ria have been reached or more iterations are required. The best performing chromo-
somes are crossbred and mutated to form the new chromosome population. Breeding
“good” chromosomes increases the likelihood of producing better off springs (Haupt
and Haupt, 2004).

2.8.2.1 | Cross Validation
In automatic feature selection, the GA chromosomes are ranked on the performance
score obtained on the unseen dataset. The performance of the ML classifier can be de-
pendent on the training and unseen data used. Consequently, dataset variations can
affect the overall outcome of the GA (Kuhn and Johnson, 2013).

K-fold cross validation was introduced as a technique that estimates the prediction
error of a classifier. The estimate was made more robust by computing the error esti-
mates as the mean of the values obtained in the different folds.

This technique can be combined with GA to determine the performance variation
generated by using different training and unseen (validation) datasets. An overarching
principle when combining these two techniques is that all decisions based on the output
variable must be performed within the cross validation loop (Hastie, 2009). For exam-
ple, if a subset of chromosomes were discarded prior to running feature selection, this
would improve the likelihood of the selecting better chromosomes, as the bad ones were
discarded on the outset. Such circumstances positively skew the performance estimate
of the GA by improving the chromosome pool of the GA.

The GA is filtering chromosomes based on the performance score computed by the
fitness function. The fitness function is using output variable to compute a score of the
chromosome. Effectively if placed outside the cross validation loop it violated the prin-
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cipal that all decisions on the output variable must happen within the cross validation
loop.

Figure 2.19: CAFA shared task schedule, reproduced from CAFA website5. At t−1,
CAFA organisers select a number of proteins that do not have laboratory annotations.
Participants have 3 months to submit their predictions for the selected targets, until t0.
At t0, the shared task pauses for a number of months, to allow time for targets to gain
laboratory annotations. Subsequently, at t1 in the evaluation phase, submissions are
evaluated against proteins that acquired laboratory curation.

2.9 | CAFA Shared Task
Within the scientific community, scientists are developing different systems in the at-
tempt to reduce the accumulation of unannotated protein sequences found in databases
such as TrEMBL. To determine the most appropriate methods that are up for the task,
a standard benchmark is required. Friedberg and Radivojac (2017) proposed a com-
munity challenge that triggers networking between participants and provides a solid
evaluation framework.

The Critical Assessment of Functional Annotation (CAFA) shared task is a time-
based and provides participants with a training dataset. Participants must train their
models and submit predictions of the identified targets.

CAFA shared task has three phases as shown in Figure 2.19. The first phase is the
prediction phase. At the beginning of this phase, a set of unannotated proteins is se-

5http://biofunctionprediction.org/cafa/ (Accessed 2018-12-28)
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lected and defined as CAFA targets. Participants have until the end of the prediction
phase to submit their predictions. CAFA enters the annotation phase, whereby the or-
ganisers wait for a subset of the selected targets to be laboratory curated. After a number
of months, the assessment phase starts. The evaluation of the submission is executed on
those targets that have received laboratory annotation in phase 2.

2.9.1 | PerformanceMetrics Used in CAFA
Clark and Radivojac (2013) proposed a framework that models a Bayesian network with
prior distributions on the GO DAG. The computation of prior distributions references
a database of annotated proteins such as SwissProt. Using the annotations found in
the dataset, marginal probabilities and information content for each term are computed
using Equation 2.22.

The “information accretion” is utilised to compute two metrics, namely remaining
uncertainty and misinformation as defined in Equations 2.23, 2.24 respectively. The re-
maining uncertainty is information that is yet to be predicted when compared to the true
positive set, whilst “misinformation” is terms that were incorrectly predicted. To facili-
tate ranking and evaluation of function prediction methods these metrics are combined
into “Semantic distance” defined in Equation 2.25. “Semantic distance” is the minimum
distance between the origin and the curve (ruk(τ) + mik(τ))τ. The preferred distance
metric is Euclidean distance attained by using k = 2.

ia(v) = ∑
v∈T

log
1

Pr(v|P(v)) (2.22)

ru(T, P) = ∑
v∈T−P

ia(v) (2.23)

mi(T, P) = ∑
v∈P−T

ia(v) (2.24)

Sk = min
τ

(ruk(τ) + mik(τ))
1
k (2.25)

where:

v = is a node in the graph.
P(v) = is the set of parent nodes of v.
T = is the true positive sub graph.
P = is the predicted function sub graph.
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2.9.2 | CAFA Evaluation Criteria
The CAFA evaluation utilises set based and information theoretic metrics based on
Equations 2.23, 2.24, 2.25 (Jiang et al., 2016). Set based metrics are computed using Equa-
tions 2.26, 2.27, 2.28, whilst information theoretic are computed using Equations 2.29,
2.30, 2.31. CAFA submissions are evaluated using Fmax and Smin performance metrics.

pr(τ) =
1

m(τ)

m(τ)

∑
i=1

∑ f 1( f ∈ Pi(τ) ∧ f ∈ Ti)

∑ f 1( f ∈ Pi(τ))
(2.26)

rc(τ) =
1
ne

ne

∑
i=1

∑ f 1( f ∈ Pi(τ) ∧ f ∈ Ti(t))

∑ f 1( f ∈ Ti(t))
(2.27)

Fmax = max
τ

2.pr(τ).rc(τ)
pr(τ) + rc(τ)

(2.28)

ru(τ) =
1
ne

ne

∑
i=1

∑
f

ic( f ).1.( f /∈ Pi(τ) ∧ f ∈ Ti) (2.29)

mi(τ) =
1
ne

ne

∑
i=1

∑
f

ic( f ).1.( f ∈ Pi(τ) ∧ f /∈ Ti) (2.30)

Smin = min
τ

√
ru(τ)2 + mi(τ)2 (2.31)

where:

Pi(τ) = the set predicted with score equal or greater than τ for a protein sequence.
Ti = the true positive set the sequence.
m(τ) = the number of sequences with at least one score greater than or equal to τ.
1 = the indicator function that returns 1 when the condition is true otherwise 0.
ne = the number of targets in evaluation.
ic( f ) = the information content for term f .
τ = a value for 0.01 to 1.00 incremented by 0.01.
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Annotations

Protein A B C D E F G H I J

P1 1 1 1 1 1 1 0 0 0 0

P2 1 1 1 0 1 0 0 0 1 0

P3 1 1 1 1 1 0 0 1 0 1

P4 1 1 1 1 0 0 1 1 0 0

Table 2.2: Listing of protein annotations.

goa
P(goa) = 1
i(A) = 0

Ontology root

gob
P(gob|goa) = 1
i(B) = 0

goc
P(goc|goa) = 1
i(C) = 0

god
P(god|gob) = 3

4
i(D) = 0.415

goe
P(goe|goc) = 3

4
i(E) = 0.415

go f

P(go f |god)= 1
3

i(F) = 1.585

gog

P(gog|god)= 1
3

i(G) = 1.585

goh

P(goh|gobgod) = 2
3

i(H) = 0.585

goi

P(goi|goe) = 1
3

i(I) = 1.585

goj

P(goj|gocgoe)= 1
3

i(J) = 1.585

Figure 2.20: Information content computed for the proteins listed in Table 2.2. Con-
ditional probabilities are computed and subsequently the information content is com-
puted using Equation 2.22.

Protein True Terms Predicted Terms RU MI

P1 ABCDEF ABCDG EF G

P2 ABCEI ABCDEI - DI

P3 ABCDEHJ ABCDEGJ H G

P4 ABCDGH ABCDGH - -

Table 2.3: Predictor predictions, ground truth and information content term sets. In-
formation content term sets contain the term set for Remaining Uncertainty (RU) and
Mis-Information (MI).
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Protein i(RU) i(MI)

P1 i(EF)
i(ABCDEF) 0.828 i(G)

i(ABCDEF) 0.626

P2 i(−)
i(ABCEI) 0 i(DI)

i(ABCEI) 0.415

P3 i(H)
i(ABCDEHJ) 0.195 i(G)

i(ABCDEHJ) 0.58

P4 i(−)
i(ABCDGH)

0 i(−)
i(ABCDGH)

0

Table 2.4: Semantic distance workings.

2.9.2.1 | Worked example
For illustration purposes, this subsection presents a worked example of the CAFA met-
ric for a classifier. The method consists of two steps, namely;

1. Compute the information content of each node in the ontology using manually
curation proteins. Using the annotation table is provided in Table 2.2, the infor-
mation content is computed as shown in Figure 2.20.

2. For each protein the set of true term, predicted term, remaining uncertainty and
misinformation are determined as shown in Figure 2.3.

The remaining uncertainty and misinformation is computed with information con-
tent values from Figure 2.20 and terms list from Table 2.2. Equation 2.32 shows the
working to compute the remaining uncertainty based on Equation 2.29. Similarly, Equa-
tion 2.33 shows the working to compute the misinformation based on Equation 2.30.
The metrics are combined into the semantic distance as per Equation 2.34, based on
Equation 2.31.

ru =
0.828 + 0 + 0.195 + 0

4
=

1.023
4

= 0.255 (2.32)

mi =
0.626 + 0.415 + 0.580 + 0

4
=

1.621
4

= 0.405 (2.33)

sd =
√

0.2552 + 0.4052 = 0.478 (2.34)

2.10 | RelatedWork
Protein function prediction is an open problem being actively researched by scientists
from different research groups. Researchers used different approaches to tackle the
problem. The following review outlines the main techniques used.
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2.10.1 | PPI-network
The main rationale behind using Protein-Protein Interaction (PPI) in protein function
prediction is that those interacting proteins are likely to exhibit the same functional-
ity (Deng et al., 2003; Schwikowski et al., 2000). Different research groups adopt differ-
ent PPI based approach to tackle protein function prediction.

PPI networks can be viewed as a connected graph whereby proteins are represented
by vertices and interactions are represented by edges. Protein functionality is a property
of the protein vertices. The work proposed by Schwikowski et al. (2000) established a
functional relation through direct links between the protein and its neighbour. Hishi-
gaki et al. (2001) externalised the functionality to a vertex. Through this change in the
PPI structure, the annotation process considers the number of proteins having a specific
GO term. The idea of the ratio is extended to probability through Markov random fields
(MRF) in the work proposed by Deng et al. (2003). This work computed two values to
determine whether to annotate a protein, namely occurrence of the GO term in the PPI
and probability obtained from the MRF.

PPI network connectivity level varies between heavily active and less active pro-
teins. Connectivity metrics can be achieved through clustering algorithms. Spectral
clustering is a type of clustering that identifies, and groups, strongly connected vertices
in the graph. The work proposed by Xiong et al. (2014) uses spectral clustering to de-
termine the minimum set of annotated proteins required to perform protein function
prediction. To work used spectral clustering on the PPI network. For each strongly con-
nected cluster, the central node is determined using graph closeness, betweenness and
degree to determine the important node in the cluster (Xiong et al., 2014).

Functionality transferred using neighbourhood metrics on a PPI network may not
apply for the target species. The work reported by Moosavi et al. (2013) tackles this
specific aspect. For target species, GO term specific scores are computed to determine
whether a given protein has the specific functionality (GO term).

The concept of network neighbourhood can be extended from a direct connection
to a path. This shift in neighbourhood definition requires the use of graph concepts. A
random walk from a given node explores all the paths that start from the given node
with a specified length. Random walks are a central tool to measure similarity in the
work proposed by Cao et al. (2013). The main rationale in this work is that similarity is
measured as the number of times a specific vertex is traversed in random walks of a spe-
cific length. Higher value implies that the proteins are similar, thus annotation transfer
can be performed. Random Walks on PPI were utilised to add missing annotations. Yu
et al. (2015) proposed a downward Random Walk on the PPI network. Similar proteins
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are identified using the semantic similarity measure and a probability value is used to
determine the walk stopping criteria.

Random Walks explore the network for reachability. However, it does not compute
relevance. An algorithm that identifies important vertices in a graph is Google’s PageR-
ank algorithm. The PageRank algorithm computes the importance of web pages by
using the quality of the links and the number of inward and outward links (Page et al.,
1999). Freschi (2007); Jiang et al. (2017) proposed PageRank based methods that rank
proteins for a specific GO term. To rank proteins for a specific GO term, a subgraph
with all proteins and a specific GO term is extracted from the PPI. PageRank is executed
to rank proteins according to GO connectivity. This process is repeated for all GO terms.

Similarity measurement can be tackled by projecting features in a lower dimensional
space and measure the distance between the points. This approach was performed on
PPI data by Wang et al. (2015, 2017). In the work proposed by Wang et al. (2015) to
predict rare protein functions, Random walks are used to garner information from two
PPI networks. The information extracted from the PPI networks is projected into a low-
ered dimensional space. “Nearness” is the measurement used to assess similarity. In
the proposed by Wang et al. (2017) multiple data sources including PPI, gene ontology,
co-expression, text mining and homology are utilised. The combined dataset is mapped
to a low dimensional space through dimensionality reduction. Inter and intra species
scores are computed, to enable annotation transfer across species. The query sequence
is processed and mapped to the feature space amongst the other sequences. Cosine
distance is used to find the nearest neighbour.

The criterion to determine whether the annotation should be made can be deter-
mined from multiple sources. Cao and Cheng (2016) proposed Statistical Multiple Inte-
grative Scoring System (SMISS) that uses three different data sources to perform protein
function prediction. The first component is determined by performing a PSI-BLAST
search against SwissProt. For each GO term, a probabilistic score is computed based
on PSI-BLAST e-value. The second component is based on interaction scores computed
on multiple PPI networks. The GO term annotation probability is computed on the in-
teraction score. The third component is computed on the relation between sequences
residues and GO terms. The link between sequence and GO term is computed by link-
ing a moving window on the protein sequence to GO term. The final probability is
computed based on the three components with different weights.

Laboratory curation methods are used to determine the function of a protein, yet
the research goal of the laboratory can be targeting a specific area thus the annotations
generated are correct but incomplete (Yu et al., 2015). Sun et al. (2018) proposed a dif-
ferent approach to build PPI networks to address some deficiencies of the PPI network.
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The highlighted deficiencies are a consistent number of false positives that reduce the
efficacy of the network, missing interactions and the shortage of annotations. To ad-
dress these issues a new approach to build PPI network is proposed. The new PPI is a
weighted PPI, the first component of the weight is based on the interactions from the
STRING database whilst the second component is a computed neighbour ratio. Addi-
tional edges are added to similar sequences identified using BLAST. Sequence GO terms
are added to the interaction using the interaction factor computed on BLAST.

2.10.2 | Homology
Homology-based methods, transfer functionality through ancestry relationship. The
homology relationship is determined through sequence alignment using tools such as
BLAST (Altschul et al., 1990) or MAFFT (Katoh et al., 2005). These tools identify the
conserved part of the protein, providing sequence match location and length.

Homology-based methods transfer functionality based on similarity, on the assump-
tion that there is sufficient confidence in the source annotation. The work proposed by
Jones et al. (2008) factors in the confidence of the source annotation in the annotation
transfer. The work uses a dataset that contains only curated annotations and filters out
annotations propagated through sequence similarity. For each GO term, the best five
representative sequences were kept. A decision tree was utilised to determine the con-
fidence score for the different annotations. In the prediction phase, a BLAST search is
performed, and the confidence score is used to determine whether the specific GO term
should be outputted.

The mechanism to determine the annotation confidence can utilise parameters such
GO term co-occurrence. The work proposed by Hawkins et al. (2009) uses sequence
similarity and GO term co-occurrence to determine the likelihood of a protein having
a specific GO term. The query sequence is aligned against sequences having a specific
GO term to determine the similarity degree. For each GO term, the likelihood that it
occurs with other GO terms is computed. The two values are used to compute the
likelihood of a specific annotation. The notion of testing annotation confidence was
tackled statistically by Koskinen et al. (2015). For a given query, sequence alignment
is performed against the UniProt protein database keeping only hits with predefined
criteria, such as sequence identity percentage and sequence length. The hits are re-
scored to factor in taxonomic distance between species, the nearer the species is the
more relevant the annotation.

Annotation confidence can be increased if the annotation confidence is determined
through a group of sequences. Bartoli et al. (2009) proposed a method that builds clus-
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ters of proteins that have a sequence identity greater than 40% and coverage greater
than 90%. A protein sequence can be a member of one cluster. UniProt protein anno-
tations are linked to individual proteins. Statistical tests (using p-value) are utilised to
determine whether all of its members should have the GO term. Subsequently, two im-
provements were made: update clusters to use sequences from UniProt 2011 and added
an HMM profile for each cluster (Piovesan et al., 2011). The use of HMM profiles facili-
tates query sequence membership identification. The clusters were recently updated by
to use UniProt 2016 (Profiti et al., 2017).

Sequence similarity (homology) based methods require sequence identity of above
30% identity (similarity) to be effective. The twilight zone is just within the limits of
homology-based methods (20-35%). The work proposed by Wass and Sternberg (2008)
performs protein function prediction method targeting the twilight zone. Position Spe-
cific Scoring Matrix (PSSM) is a technique to match a given sequence against a consen-
sus sequence. For each GO term, a PSSM (profile) is built. In the prediction phase, the
unknown sequence is aligned with the PSSMs’ of the GO terms and the prediction is
determined by the outcome of the alignment.

A sequence can be composed of multiple domains. Aligning multiple proteins that
have the same domain will generate the consensus sequence of the domain and possibly
including other residues. Working at the domain level will decrease noise and possibly
improve performance. Lee et al. (2009) proposed “GeMMA” framework to classify pro-
teins into functional clusters. With evolution, the protein sequence mutates, however,
the folded structure of the protein tends to be more stable (Lee et al., 2009). GeMMA
works at the domain level to enable handling of multidomain proteins and caters for
domain shuffling. GeMMA generates several functional clusters, each one represented
by the consensus sequence of the sequences in that cluster.

Rentzsch and Orengo (2013) proposed a framework that maps functionality to pro-
tein domains based on “GeMMA”. The clustering protocol is modified to ensure that
each cluster has least 90% similarity between sequences. Clustering stops when only
one cluster remains. A quality control check drops any non-functionally coherent clus-
ters. Each cluster (family) is associated with a list of functionalities and probabilities
computed on its members. To perform annotation prediction, the target sequences are
scanned against a superfamily HMM. The top matching hit is used to determine the list
of annotations together with the probabilities. The aspect of cluster functional coher-
ence is tackled by the work of Das et al. (2015b). This work adds functional coherence
checks at the stage of cluster merging by similarity.
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2.10.3 | Machine Learning
Machine Learning (ML) is a set of techniques that learn from the training data pro-
vided. These techniques have been applied in various fields including protein function
prediction. This subsection reviews, the work applying ML techniques to tackle protein
function annotation prediction.

The Support Vector Machine (SVM) classifier was utilised in various protein func-
tion prediction methods. SVM is an ML technique utilised in the three iterations of
FFpred (Cozzetto et al., 2016; Lobley et al., 2008; Minneci et al., 2013). The first version
of FFred targets a specific set of GO terms originating for the Human species. For each
GO term, five SVM classifiers are trained using partitions extracted using homology re-
lated information (Lobley et al., 2008). FFpred determines whether a sequence has the
GO term using majority voting on the five classifiers for each GO term. Prediction con-
fidence is computed using Platt distance to probability translation. The second iteration
of FFpred improves the training protocol used to train FFpred (Minneci et al., 2013).
The main improvements proposed include a larger training dataset originating from
UniProtKB and using K-Fold cross validation. The third iteration of FFred expanded
the prediction capabilities to tackle the three GO ontologies (Cozzetto et al., 2016).

Classification methods combine different techniques in order to increase the data
available to the methods. The work proposed by Guan et al. (2008) uses SVM and
Bayesian network of SVM’s. The architecture utilised includes an SVM classifier and
a Bayesian network. The SVM classifier was trained for all GO terms with bagging.
The Bayesian network maps the GO hierarchy, each node contains a specifically trained
SVM classifier.

SVM separates different classes using a hyperplane. The distance of classes in the
feature space is a key factor for the performance of the classifier. This rationale is central
in the work proposed by Sokolov and Ben-Hur (2010). The work proposed two methods
that modified the ML technique to increase the distance between the classes. In the case
of the NN method, the error function factors in the GO hierarchy. Whilst the SVM
hyperplane placement algorithm was modified to separate the true and best match by
a given margin. The work proposed by Kahanda and Ben-Hur (2017) is the second
iteration of the SVM based method. This work was improved in three areas: use of
cross validation, the dataset was enriched with PPI data and changed the hyperplane
positioning to consider the first and second-best sample as one.

In order to apply NN on protein sequences, the sequence information must be con-
verted to a matrix. For this purpose, the work proposed by Clark and Radivojac (2011)
uses NN to perform protein function prediction from a sequence. The process of con-
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verting the protein sequence into the matrix required experimentation to find the op-
timal method encoding method. Dataset containing protein features and annotations
were used with NN and SVM for protein function prediction (Jensen et al., 2003).

2.10.4 | Deep Learning
Within the domain of artificial intelligence, Deep Learning (DL) is being applied in dif-
ferent areas. This subsection reports on the application of DL techniques in protein
function prediction.

DL techniques are a subclass of ML technique that applies neural networks to a
complex problem. In DL neural networks are stacked to create intermediate abstract
features that optimise the classifier performance.

Recurrent Neural Network (RNN) is a DL architecture that has a memory of past
data. RNN has been applied to perform protein function prediction from a protein
sequence (Cao et al., 2017; Liu, 2017). The work proposed by Liu (2017) performs a
prediction of four specific GO terms. The architecture uses multiple forward and re-
verse Long Short-Term Memory (LSTM) layers. The output layer is a fully connected
layer that uses “SoftMax”. SoftMax enables a classification network to perform predic-
tion together with confidence. The work proposed by Cao et al. (2017) uses a different
approach, whereby each protein sequence is split into k-mers and associated with GO
terms. K-mers occurring less than 1000 times are discarded. The k-mers and annota-
tions are fed into the RNN, padding the input matrix if needed. The output of the RNN
network are the predictions (GO terms).

Autoencoders are a DL technique that enables efficient data coding and decoding.
Singular Value Decomposition (SVD) technique enables the decomposition of a given
matrix (A) into three components, (A = U ∑ VT). ∑ is a diagonal matrix that maps
the strength of the relationships. Truncated Singular Value Decomposition (tSVD) per-
forms SVD on the given matrix keeping only the strongest k components (dimensional-
ity reduction). The work proposed by Chicco et al. (2014) uses autoencoders to perform
protein function prediction and compares its performance against tSVD methods. Au-
toencoders are configured to have a small hidden layer so that the network “learns” the
most important features in the dataset (to perform dimensionality reduction). The work
proposed by Gligorijević et al. (2018) used Multimodal Deep Autoencoder (MDA) and
SVM on PPI data to perform protein function prediction. This work uses two PPI net-
works for yeast and human species based on STRING database. The role of the MDA to
map the input data into vectors of numbers (embedding). For a set of proteins, the PPI
information is extracted using Random Walk with Restarts and computed into a Posi-
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tive Pointwise Mutual Information (PPMI) matrix. The matrices are fed into an MDA to
perform the embedding process. The generated matrix is used to train an SVM model
which in turn was used to perform function predictions.

Restricted Boltzmann Machines are a DL architecture that has just one hidden unit.
Zou et al. (2017) applied Deep Restricted Boltzmann Machines (DRBM) on PPI data to
predict missing functionality in current annotations. DRBM were selected due to their
resiliency to missing information, convergence speed and stability. This work is based
on the GO ontologies and Gene Ontologies Annotations (GOA). The GOA dataset was
filtered to keep only four species and GO terms associated with at least one protein.

2.11 | Summary
This chapter provided an introduction of the different areas required for this disserta-
tion and a review of the related work. The overview introduced protein representation
and protein structure. This was followed by the processes used to determine protein
annotations (functionality description) and explored of protein similarity. A number
of protein databases and the mechanism to store protein functionality (GO) were de-
tailed. These were followed by an overview of ML techniques and feature selection.
The last part of the overview tackled ML performance metrics and CAFA shared task
performance metrics.

The final part of the chapter reviewed the work performed in the area of protein
function prediction. The review reported on the work on protein function prediction
using four main approaches, namely PPI, homology based, ML and DL. The four dif-
ferent approaches utilised different datasets whilst some methods utilise multiple data
sources and multiple techniques.
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3
Methodology

This chapter presents a detailed description of the process used to determine the ex-
periments and the experiment environment. The first section discusses the experiment
design considerations building on the knowledge acquired in Chapter 2. The second
section details the experiment design. The third section details architecture of the ex-
periment setup including software modules required to perform the experiments. The
fourth section describes the datasets used and the augmentation process in detail. The
last section details the process used to generate species-specific datasets required for
ML.

3.1 | Design Considerations
The aim of this dissertation is to improve Protein Function Prediction (PFP) though
the use of ML techniques. This work will use the datasets provided by Dr Lees from
the Orengo Bioinformatics Group at UCL to investigate the application of different ML
techniques.

One of the objectives defined at the outset requires the identification of features in
the dataset to perform PFP. Given a dataset with n features, there are n! different com-
binations. The time required to evaluate one combination is given by t, assuming eval-
uation of individual permutation is done in constant time. The total time to evaluate all
the feature space is thus t× n!. Although this approach guarantees the identification of
the feature set linked to the global optimum (highest Fmax value), the time required is
unfeasible.

In ML feature selection is critical as it determines the features required. Different
feature combinations have different information levels that enable the ML technique to
learn and perform predictions. The identification of the pertinent subset of features can
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be performed manually or automatically. In case of manual feature selection, domain
knowledge and data analysis are essential to isolate key features.

The expert knowledge of the domain can either select a subset of features to use in
ML or discard a set of features a priori as their information contribution is insignificant.
In the latter case, further feature analysis is required. For this purpose, automatic feature
selection is utilised.

Automatic feature selection is implemented as a GA that mimics the process of bi-
ological selection. Dataset features are represented by binary bits and a combination
of features are called a GA chromosome. The fitness function is used by the automatic
feature selection to a determine the performance of the chromosome. The best chromo-
somes are cross bred and mutated to explore the feature space. The termination criteria
used in automatic feature selection are either reaching a predefined fitness level or the
number of epochs to be performed.

The application of automatic feature selection using a GA on a dataset will identify
the best performing chromosome in a specific run. This chromosome is associated with
a maximum, but it can a either a local or a global maximum. The GA does not guarantee
that the global maximum can be identified as only a fraction of feature space is explored.

The fitness function used to evaluate the GA chromosome, in turn uses ML tech-
niques to train a model, generate predictions of an unseen dataset and evaluate its per-
formance. Different ML techniques perform differently on the same data. The difference
is due to different internal workings, thus the optimal feature set is machine learning
technique specific. For this purpose, different machine learning techniques must be
evaluated.

The training dataset contains protein features derived from sequences originating
from different species. Organisms living in different habitats necessitate different pro-
tein functionality for survival. The protein functionality implemented by a specific or-
ganism can be different from those another species. For example, the zebra fish ne-
cessitates different protein functions when compared to Escherichia coli Bacteria. The
evolutionary distance between species introduces protein sequence and functional di-
vergence.

A PFP trained using proteins originating from different species can predict func-
tionality that is not valid for the target species. For this purpose, the GO provides a
species-specific GO DAG called GO subsets or GO slims1 that describes functionality
of a specific species. Species-specific GO DAG can be utilised to check whether the
predicted functionality is valid for the target species.

1http://www.geneontology.org/page/go-subset-guide (Accessed 2018-12-28)
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Another solution is to utilise species specific classifiers, that predict functionality
relevant to the target species. It is expected that the performance of this classifier is
good on the target species, but its performance will drop as the evolutionary distance
increases. This dissertation tackles protein function prediction using species specific
classifiers aiming to prioritise prediction performance. Due to data constraints the Homo
sapiens (Human) and Escherichia coli (Bacteria) biological taxonomies will be tackled.

3.2 | Experiment Design
This section details the different experiments that were designed to fulfil the objectives
of this dissertation. Experiments were designed to identify the putative features from
the dataset and the appropriate ML technique for reliable PFP.

3.2.1 | Application of Genetic Algorithm to the Dataset
The application of the GA requires splitting the training dataset available to 80% for
training and 20% for validation datasets. The training dataset will be used to train the
classifier whilst the validation dataset will be used to evaluate its performance. The GA
will be configured to perform 30 epochs, in each epoch the best ten and the worst six
chromosomes are single point cross bred and seven bits are mutated. To increase the fea-
ture space exploration, two totally random chromosomes are added to the chromosome
pool at each epoch.

3.2.1.1 | Genetic Algorithm Feature Selection onDifferent Taxonomies
Different species adapt to different habitats and external factors. Consequently, a pro-
tein function found in a taxonomy can be absent in another taxonomy. Two taxonomy
specific datasets were generated for Homo sapiens and E. coli. The two species-specific
datasets were used with automatic feature selection. This experiment will determine
whether features for PFP are species specific.

3.2.1.2 | Genetic Algorithm Feature Selection using Different Machine Learning
Methods

Different ML techniques utilise different internal workings that have a bearing on the
classifier performance. This experiment aims to use the GA to explore the feature space
using different ML techniques. For this purpose, Random Forest (RF) and Support Vec-
tor Machine (SVM) will be used to evaluate the feature chromosomes.

51



Chapter 3. Methodology 3.2. Experiment Design

3.2.1.3 | Machine Learning Tuning
The performance of ML techniques is effected by hyperparameters that modify the be-
haviour of the technique affecting its performance. This experiment assesses different
hyperparameters of ML techniques.

ML techniques have different internal workings thus each technique requires spe-
cific tuning. Identification of the best hyperparameters for the given dataset can be
achieved through experimentation. The experimentation entails keeping the experi-
ment setup constant varying only specific hyperparameters, to determine the change in
performance and/or runtime.

In this experiment the SVM penalty variable referred to as C will be investigated.
This parameter controls the penalty for misclassified samples during training. High C
values reduce training error but tend to reduce the distance between the classes. Con-
versely, low C values increase the distance between classes. In this experiment two
penalty values are considered C=1.0 and C=0.1 due to resource constraints.

In the case of RF, the leaf splitting criterion is explored. For this experiment two
criteria are considered, entropy that is based on information gain and Gini that is based
on misclassification probability.

The best performing set of features for each ML technique with the respective hy-
perparameters will be tested for generalisation. The test setup entails, training the ML
technique with the training dataset and generate predictions on the testing dataset.

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Training dataset

Training Validation

GA1

GA2

GA3

GA4

GA5

Per f1

Per f2

Per f3

Per f4

Per f5

Performance =
1
5

5

∑
i=1

Per fi

Figure 3.1: Cross validation applied to feature selection process.
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3.2.2 | Cross Validation and Feature Selection
The performance of the classifier is dependent on the data used during training. Within
the GA dataset variation can generate different results.

The experiment illustrated in Figure 3.1 entails performing k-fold cross validation
with K = 5 on the training data. For each fold, the GA will be executed, and the chro-
mosomes ranked. The final result is the mean score of five different GA that have per-
formed feature selection on training and validation data different partitions.

3.2.3 | Application of Neural Networks to the Dataset
During NN training the dataset features are prioritised through the weight adjustments.
The downside of using NN is that all the dataset is required. In the hidden layers of
the NN abstract features are generated. This experiment will train a number of NN
architecture to determine the most appropriate for PFP.

The amount of training data available to train the species-specific models is limited.
For example, in the case of Homo sapiens which is the most represented species there are
just over ten-thousand annotations. In view of these limitations, DL techniques will not
be applied and the multi-layer perception networks will be used.

The NN training termination criteria used impacts the network performance and the
training time. The decision can be based on the number of epochs or on the change in
network error rate. The main aim of the training phase is to minimise the network error.
During training, the weights are adjusted to find a better optimum. The equation of
the error surface is unknown thus the only way to minimise it is to explore it through
training.

The neural network architecture used in this experiment consists of one input layer,
different number hidden layers and an output layer. The experiment will use up to
three hidden layers with neuron counts based on the distinct number of GO terms in the
dataset. The number of neurons start from two-hundred and increases to two-thousand
in four steps as described in section 4.3. The hidden layers use the ReLU activation
function and the output layer uses SoftMax activation function. The SoftMax output
layer, permits the classifier to output both the predicted class and prediction confidence.

Defining the training termination criteria based on the number of training epochs,
does not factor in network convergence. For this purpose, the output of the loss function
is used to compute the error of the epoch. Training is stopped when three successive
epochs do not further reduce the error. Allowing three epochs should enable the NN to
escape a local optimum and find a better one.
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To speed up training the training epoch is split into mini batches. The mini batch
shuffles the training set and run a mini epoch on two-hundred samples. The motivation
is that smaller adjustments will help the network converge faster (Mishkin et al., 2016).

During training, the network errors are computed and through back propagation
the error is apportioned using the neuron weights. In the weight adjustment phase, the
ADAM optimiser considers previous adjustments (momentum) and variable specific
learning rates.

The different NN architectures will be tested for generalisation. The test setup en-
tails, training the NN architecture with the training dataset and generate predictions on
the testing dataset

3.2.4 | Determine the Amount of Training Data Needed
This experiment aims to investigate the link between the amount of training data and
the performance of the ML model. For this experiment the top performing method for
Homo sapiens and E. coli biological taxonomy was tested. In this experiment the protein
sequence annotations contained in the training dataset are read to build a number of
datasets. The sizes of the dataset are 500, 1, 000, 1, 500, ..., maxsize.

For each generated dataset, a ML model is trained and the performance is evalu-
ated against the same unseen testing dataset. This experiment will enable analysis of
different aspects of the ML model in relation to the training dataset size.

3.2.5 | Cross SpeciesModel Experiments
A control experiment was performed to determine the performance of a model trained
on a specific species when it is applied in the context of another species. To assess the
performance of the model on other taxonomies, all the species available in the train-
ing dataset will be used. In order to avoid skewing the results, only taxonomies with
one hundred sequences or more will be reported. The expected outcome of this exper-
iment is to show the relation of the predictor performance with the taxonomic distance
between species.

3.3 | Solution Architecture
The main aim of the dissertation is to build a ML model that can perform reliable protein
function prediction. This aim requires the evaluation of the predictive performance of
the different features available in the dataset using different ML models.
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Figure 3.2: Solution Architecture used in this dissertation. Independent software mod-
ules are interfaced to provide the required experiment environment.

For this purpose, the architecture defined four modules interacting as illustrated in
Figure 3.2 through the fifth module. The four modules are completely decoupled from
each other to facilitate development and component reuse. The proposed functionality
of the modules is:

� Pipeline - Wrapper modes that orchestrates the other modules to run the experi-
ments.

� Feature Selection - Implements the automatic feature selection.

� Machine Learning - Wrapper module that enable testing of different ML methods.

� Performance evaluation - Implements CAFA hierarchical evaluation metrics.

� Neural Network - Wrapper module that enables testing of NN.

Apart from the five core modules two additional software projects were developed.
These two modules enable the creation of species-specific datasets and processing of
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external and generated data.

� Dataset generators - Implements the logic to generate the required datasets for ML.

� Miscellaneous - Consists utility code to manipulate the various datasets and gener-
ate figures.

3.3.1 | Software Components
The experiments defined in the section 3.2 require software components to be defined
and developed. This section describes the implementation aspect of each module.

3.3.1.1 | Feature Selection
The feature selection module is an independent module that provides the framework
to explore the input dataset feature space. The exploration is performed by generat-
ing chromosomes representing dataset features. Each chromosome is evaluated using
a fitness function. Through this approach, the GA is agnostic of the method used to
evaluate the chromosome. In this work, the fitness function will return two values, the
actual performance metric and the prediction confidence. This additional information
enables the assessment of the predictor quality at the reporting stage.

In this work the GA was modified to be more aggressive in the exploration of the
feature space. The main improvements were:

� Initial seeding of the population includes random chromosomes and individual
features chromosomes.

� In each generation random chromosomes are added to the chromosome pool to
search the feature space more aggressively.

3.3.1.2 | Machine Learning
The machine learning module provides the necessary infrastructure to pre-process the
dataset, train ML models and use an external Python module to compute performance
metrics. The module uses the ML models provided by Scikit-learn (Pedregosa et al.,
2011).

In order to facilitate the evaluation phase, the ML module has an option to store the
prediction results to an SQLite database. This option was added to avoid re-executing
the specific experiment to run the evaluation code.
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3.3.1.3 | Evaluation
The evaluation module implements the CAFA evaluation framework in Python. The
implementation is a clean room implementation based on work of Clark and Radivojac
(2013). Apart from the coding aspect, two additional data sources are required. The first
one is the GO DAG and the corresponding precomputed information content value for
each GO term. Dr Lees from Orengo Group at UCL provided us with both an OBO file
containing the GO DAG and a Python pickle file containing the information content of
29,090 GO term originating three ontologies.

The correctness of the implementation was verified against a manually worked-out
example, exact matches and the evaluation code used in CAFA2. The CAFA2 evaluation
is a Matlab implementation developed by Yuxiang Jiang2. The GO DAG is available in
OBO file format. This file is a human readable file and provides the information of the
GO terms and the GO hierarchy. To verify that the two implementations generate the
same result, ground truths, predicted terms, OBO file containing the GO DAG and GO
term information content must be the same. A set of ground truths, predicted terms
were extracted from Matlab and formatted to be used by the Python implementation.
The precomputed information content data was extracted from Matlab and stored in the
required format for Python. A number of tests were performed and confirmed that the
two implementations are generating the same output given the same inputs.

The results of an evaluation runs are stored into MariaDB database. This facilitates
checking the status of the run, using standard SQL syntax to retrieve the required infor-
mation. Furthermore, the experiment setup involves three machines, each one having
specific evaluation data. Through standard database administration tools, the database
is exported from the experiment machine and imported onto the development machine.
The availability of the data on a single machine simplifies data analysis.

3.3.1.4 | Neural Network
The neural network provides the necessary support infrastructure to load the input
dataset, perform training, generate prediction against the testing data and use an exter-
nal module to compute performance metrics. The module uses the NN models provided
by PyTorch (Paszke et al., 2017). The implementation of PyTorch was preferred over the
one provided by Scikit-learn as it provided more control over the training termination
criteria.

2https://github.com/yuxjiang/CAFA2 (Accessed 2018-12-28)
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3.3.1.5 | System Pipeline
The system pipeline is a Python module developed to run the experiments. Through
the appropriate interfaces built into the software, different experiments can be executed
by orchestrating the API’s of the different modules. All the information pertinent to
the experiments such as timings and results are stored in MariaDB to facilitate retrieval.
Within the pipeline a class was implemented to read the predictions stored in SQLite
and trigger the evaluation code.

3.3.1.6 | Dataset Generators
The training and evaluation datasets used in this dissertation were provided by Dr Lees
at UCL. These two datasets required augmentation to generate species-specific datasets.
Within the two datasets, sequences are identified differently. In the training dataset the
identifier used is the UniProt identifier. Whilst in the evaluation dataset, the identifier
is the CAFA target identifier. Although the result of the two process is the same, pro-
cessing the evaluation dataset requires an additional step to map CAFA targets with
UniProt identifiers. To simplify the codebase, the training and evaluation datasets are
generated using two different Python projects.

3.3.1.7 | Miscellaneous
This work required inclusion of additional data sources and the creation of intermediate
artefacts. The utility code was developed to check the feasibility of an idea and to assess
whether it addresses specific needs. The code includes: GO DAG analysis, tool to down-
load annotations for protein from QuickGO and UniProt web services, CATH Funfam
annotation downloader, GOA QuickGO dataset processing and GA result analysis tool.

An important python implementation within the miscellaneous package is the fig-
ure generator. This source file is used to generate the result visualisations presented
in this dissertation. Each visualisation has a data source declaration that defines which
MariaDB database to use and the primary key ranges for the experiment concerned. The
required data is retrieved from the MariaDB database using the information of the data
source definition and the visualisation generated using Matplotlib (Hunter, 2007). This
approach ensured that figures are consistent throughout and re-execution of a specific
experiment requires updates of the data sources definition, database name and primary
key ranges.

58



Chapter 3. Methodology 3.3. Solution Architecture

Python package Version Usage

Cython 0.29 Used to convert Python code to C.

SQLAlchemy 1.2.14 Used to integrate MariaDB and Pandas.

bioservices 1.5.2 To access QuickGO and UniProt API as Python API.

bitstring 3.1.5 Utilised in the GA to manipulate bit patterns.

goatools 0.8.9 Used to parse and query GO OBO files.

joblib 0.13 The job library used in the GA to parallelise tasks.

matplotlib 3.0.2 Utilised to generate high quality visualisations.

mysql-connector 2.1.6 Used to connect to MariaDB.

neo4j-driver 1.7.1 Used to analyse the GO DAG.

numpy 1.15.4 Used to speed up the evaluation code calculations.

pandas 0.23.4 Used to read and manipulate datasets.

psutil 5.4.8 Used to get Linux process ID.

requests 2.20.1 Used to query QuickGo web services.

scikit-learn 0.20.0 The main ML library used in this dissertation.

sklearn-pandas 1.7.0 To facilitate usage of Pandas with SciKit-Learn.

tables 3.4.4 Pandas pre-requisite to read HDF files.

torch 0.4.0 Used as the NN implementation in this dissertation.

Table 3.1: Python packages used in this dissertation

Environment RAM CPU Type Total Cores

Development 4GB i7-6500U CPU @ 2.50GHz 4

Experiment 96GB Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 16

Experiment 96GB Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 16

Experiment 128GB Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz 56

Table 3.2: Machines used in dissertation experiments.
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Type Version

Operating system Ubuntu 16.04 LTS

Programming Language Python 3.6

Database Back end MariaDB 10.3

Graph Database Neo4J Server 3.4.7

Table 3.3: Software used in this dissertation.

3.3.2 | SystemArchitecture
The software for this dissertation was developed using the software environment listed
in Table 3.3. All the software developed in this work is based on freely available open
source software.

The software for this dissertation was written in Python version 3.6. The main driver
for this choice is that Python has the necessary modules to connect to the various data
sources and tools to process bioinformatics data. Python version 3.6 was compiled from
source and installed on the target machines. A python virtual environment was created
and installed with the packages listed in Table 3.1 using python install manager (pip).

For this dissertation, four machines were utilised; a development machine and three
machines to run the experiments. The development machine is a small virtual machine
running on a laptop that was used to develop, test and debug all the software com-
ponents. To ensure a consistent software environment for all software developed, all
software components and experiment configuration files are appropriately versioned in
Git. The development environment did not have sufficient resources to run ML against
the complete dataset due to memory constraints. This constraint was addressed by us-
ing bigger machines to run the experiments as per Table 3.2.

Whilst executing the GA experiments, two observations were made, the memory
usage during the RF runs sometimes peaks to around 13GB and that SVM uses a single
CPU for a significant amount of time with low memory consumption. For this purpose,
the GA execution parameters were modified to control the parallel section illustrated in
Figure 3.3. The parallelisation was configured to run five concurrent job RF ML tech-
nique and run twelve concurrent jobs SVM ML technique. The cross validation experi-
ments were executed on the machine with higher core count. In order to benefit from the
additional resources, the parallelisation parameters were revised to run six concurrent
jobs for RF and fifty-three concurrent jobs for SVM.

During debugging of the evaluation module described in section 3.3.1.3, it was noted
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Figure 3.3: Automatic feature selection with the parallel section evidenced.

that the runtime performance of some functions within the developed modules was not
optimal. In these cases, the code was rewritten, changing data structures to improve
performance. To further improve performance of computationally intensive sections,
the Python code is converted to C code using Cython. This transition improved the
speed considerably without significant code modifications.

3.4 | The Dataset
This research utilises two datasets that were made available by Dr Lees. The first dataset
comprises of the features computed for the proteins in the CAFA2 training dataset. The
second dataset contains the features computed for the CAFA3 targets. The first dataset
will be used to train the ML algorithm and the second dataset will be used to evaluate
the model.

The training dataset was made available as a single Python pickle file of 1.5GB in
size. The Python pickle file was de-serialised and contained a Pandas DataFrame (McK-
inney, 2010). The Pandas dataframe was analysed and it was confirmed that all the GO
terms in the file originated from the Molecular Function GO ontology.

Within the Big Data contexts, the Hierarchical Data Format (HDF)3 file format is used
for organising large datasets. The HDF file format is supported by different languages
thus enabling different applications to exchange data.

3https://www.hdfgroup.org/HDF5 (Accessed 2018-12-28)
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The second dataset comprised of 166 HDF files with a total size of 50GB. The nam-
ing convention of the files, denote the GO ontology of the terms in the files. The files
for Cellular Component Ontology start with “C”, files for Molecular Function Ontology
start with “M” and files for Biological Process Ontology start with “P”. This disserta-
tion focuses on molecular function ontology, for this purpose, the data of the Molecular
Function ontology was extracted.

The Molecular Function dataset was distributed amongst multiple files. To facilitate
processing the data was read and aggregated into a single HDF file and loaded into the
MariaDB database. The steps up to concatenate the HDF files were:

1. For each Molecular Function ontology HDF file (filename starts with “F”).

a) Read the HDF file in Pandas DataFrame.

b) Removed extra columns that are not useful for this dissertation.

c) Add the Pandas DataFrame to a list.

2. Concatenate the list of Pandas DataFrames into one DataFrame.

3. Save the Pandas DataFrame into HDF file and in MariaDB.

The datasets consist of twenty-nine features that describe the protein and annota-
tions. An overview of the data available in the dataset is included in Appendix B. The
features available in the dataset are:

� GO - The target GO term of the entry.

� taxonomic description fields - a marker of the protein origin Eukaryote, Bilateria and
Gramme Negative Bacteria.

� disorder - a marker to determine lack of stable tertiary structure computed using
RAPID4.

� disorder information - for the given sequence such as fraction of charged residues,
kappa value and hydropathy are computed using CIDER5.

� GO term measurements - Measure computed on the GO term itself such as occur-
rence frequency, level in GO DAG and whether GO term is linked to a domain.

� number of PFAM domains - number of PFAM domains associated with this GO term.

4http://biomine.cs.vcu.edu/servers/RAPID (Accessed 2018-12-28)
5http://pappulab.github.io/localCIDER (Accessed 2018-12-28)
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� mmseq information - mmseq information extracted from sequence, software avail-
able from GitHub MMseqs26. The information includes closest hit information,
such as bit score, sequence identity and rank of sequence hit from all hits.

� PFAM to GO mapping - whether there is a PFAM to GO mapping using pfam2go
list7.

� signalp - where sequence has presence of signal peptide cleavage sites in amino
acid sequences from different organisms using the SignalP server8.

� tmhmm - the number of predicted transmembrane helices in proteins using the
TMHMM server9.

� all_go_prop_cath_funfam - The proportion of proteins that are members of the same
CATH funfams and have this GO term, considering all annotation evidences.

� all_go_prop_dc - The proportion of proteins that have the same domain combina-
tion and have this GO term, considering all annotation evidences.

� all_go_prop_pfam - The proportion of proteins that are members of the same PFAM
Family and have this GO term, considering all annotation evidences.

� all_go_prop_pfam_funfam - The proportion of proteins that are members of the same
PFAM domain and have this GO term, considering all annotation evidences.

� strict variants of variables prefixed with all_go_prop_ - the ratio is computed the same
but annotation filtering criteria is more strict, discarding electronic annotations.

� yval - whether the data used by Dr Lees represents a true positive (1) or not (-1).

The training dataset was loaded into MariaDB for analysis. The dataset contains a
total of 3,293,302 annotations originating from 31,097 sequences. GO term occurrence
was analysed and the most common ten functionalities are reported in Table 3.4.

3.5 | Cleaning and Augmenting the Data
After the two datasets were loaded and analysed, it transpired that both datasets contain
features computed for a number of GO terms including for the true annotations. The

6https://github.com/soedinglab/MMseqs2 (Accessed 2018-12-28)
7http://geneontology.org/external2go/pfam2go (Accessed 2018-12-28)
8http://www.cbs.dtu.dk/services/SignalP (Accessed 2018-12-28)
9http://www.cbs.dtu.dk/services/TMHMM (Accessed 2018-12-28)
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Occurrences GO Term Description

28,343 GO:0005488 binding

24,150 GO:0003824 catalytic activity

23,353 GO:0005515 protein binding

21,930 GO:0097159 organic cyclic compound binding

21,612 GO:1901363 heterocyclic compound binding

21,195 GO:0043167 ion binding

17,864 GO:0003676 nucleic acid binding

17,509 GO:0043169 cation binding

17,030 GO:0016787 hydrolase activity

16,954 GO:0043168 anion binding

Table 3.4: Top 10 most occurring GO terms in the training dataset.

augmentation process uses external datasets such as GOA QuickGO to identify the true
positive GO terms for protein sequences. Due to data differences in the way proteins
are identified, the training and evaluation datasets are augmented differently.

The augmentation process of the training dataset is outlined in Figure 3.4. The Pan-
das dataframe containing the dataset is loaded from the Python pickle file. The GOA
dataset version 124 was downloaded from GOA FTP site10. The release date of the
version 124 matches the release date of the dataset. The downloaded GOA dataset is
a compressed tab delimited file, containing UniProt ID, GO term, evidence code and
source database amongst other details. This file was parsed using a specifically devel-
oped Python utility to read the file and extract the required fields. For efficiency, the set
of proteins in the training dataset was used to determine which proteins to process in
the GOA dataset. Subsequently, filters were applied related to the molecular function
ontology and evidence codes. In order to train the ML models with reliable data, only
laboratory confirmed evidence were used. The annotation information extracted from
the GOA dataset was stored in the MariaDB database.

The enrichment term set for a GO term includes all the GO terms up to the GO on-
tology root. The deeper the term is on the GO DAG the bigger the enrichment term set.
The retrieved GOA annotations were analysed, and it was noted that some sequences
had enrichment terms to the ontology root. For this purpose, the annotation subgraph
was analysed and only the leaf nodes were kept. This step was important to ensure

10ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/old/UNIPROT/ (Accessed 28 Dec. 2018)
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Figure 3.4: Training dataset augmentation though multiple data sources.

that the classifier trained on the dataset would output specific terms rather than generic
ones. The process used to identify the leaf nodes is as follows:

1. For each protein sequence in the dataset

a) For each GO annotation, get the enrichment term set from GO DAG.

i. For each GO annotation, mark node as leaf node if it does not occur in
the enrichment term set of other GO terms.

ii. Flag leaf nodes in database.

The GOA dataset containing the most specific annotations of the proteins are used to
build the training dataset. The intersection of the Dr Lees‘ dataset and the GOA dataset
on the protein identifier and the GO term fields generates the augmented dataset. This
dataset contains all the annotated proteins and the respective ML features.

The process to augment the evaluation data requires more steps to map the CAFA
target name to UniProtID and to retrieve UniProtID taxonomy identifiers. The process
is illustrated in Figure 3.5.
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Figure 3.5: Evaluation dataset augmentation though multiple data sources.

Within the HDF file, sequences are labelled using CAFA target identifiers. In or-
der to search for the CAFA target details in protein databases, the UniProt accession
identifier is required. CAFA provides the target sequences and sequences identification
information in the FASTA file for each taxonomy, marked as “CAFAtarget data” in Fig-
ure 3.5. The sequences identification information consists of CAFA target identifier and
UniProt entry name. The FASTA files, one for each taxonomy were extracted to a direc-
tory. Each file was parsed, extracting the CAFA target ID and UniProt entry name. All
the information was inserted in the MariaDB database.

The data from the FASTA files provided the required link to map the CAFA targets to
UniProt entry name. A list of UniProt entry name was extracted from the database and
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used in UniProt ID mapping service11, marked as “UniProt ID mapping” in Figure 3.5.
The mapping service, generates a tab delimited file which was downloaded, parsed and
loaded in MariaDB database.

Within the “CAFA3 dataset” the taxon identifier is a numeric value representing
the taxonomy identifier (taxonID). This identifier must be converted to species names
using “NCBI TaxId”. For this purpose, the list of taxonomic identifiers obtained from
the CAFA FASTA files were mapped to species using the NCBI Taxonomy mapping
service12. The information pertinent to the taxonomy identifier and species description
was stored in MariaDB database.

The GOA dataset contains the annotations data used by the QuickGO website. The
true annotations of the CAFA3 targets can be retrieved from the “GOA dataset”. For
the scope of this dissertation, the GO annotations version 152 were downloaded from
GOA FTP site13 and loaded to MariaDB. The QuickGO annotations were retrieved for
all CAFA targets using the UniProt identifier. The retrieved annotations were filtered to
keep only laboratory curated quality annotations originating from the Molecular Func-
tion ontology. The ground truths for the CAFA3 dataset were processed to remove leaf
annotations using the same procedure for the HDF file.

The QuickGO annotations were found to be enriched to the ontology root. For this
purpose, the leaf annotations were identified using same approach as for the train-
ing dataset. The intersection between of the QuickGO database and that of the Dr
Lees CAFA3 dataset evidenced as “Keep only annotated term" generated the evalua-
tion dataset used in this research.

3.6 | GeneratingMachine Learning Datasets
The augmented dataset contains protein measurements of proteins originating from dif-
ferent species. For the scope defined in the earlier chapters, species-specific datasets
must be generated.

3.6.1 | Manual Feature Selection
In order to reduce the size of the problem, the dataset was analysed to determine whether
some features should be removed from the ML datasets. The reduction of a single fea-

11https://www.uniprot.org/uploadlists (Accessed 2018-12-28)
12https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi (Accessed 2018-

12-28)
13ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/old/UNIPROT/ (Accessed 2018-12-28)
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Figure 3.6: ML dataset generation from augmented dataset.
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ture reduces the number of combinations from n! to (n − 1)!. With a large value of
n the reduction of combinations is considerable. From the dataset, five features, were
removed, namely:

� yval - flag to determines whether entry is considered part of true positive set by
Dr Lees model. This feature is irrelevant for protein function prediction.

� go_freq_score, go_level, go_with_domain, go_with_mmseq - These features describe
different dimensions of the GO terms. Given that the model is predicting GO
terms. These metrics create a strong correlation between prediction features and
ground truths, thus they were discarded.

3.6.2 | Dataset Generation
The augmented dataset was used to generate species specific datasets for the defined
experiment. The process used to generate the species-specific dataset is shown in Fig-
ure 3.6.

The first step of the process is to read the complete dataset and apply a taxonomic
filter. A check is performed to determine whether the sufficient annotations are avail-
able to fulfil requested amounts. In case sufficient data is available, a list of sequence
identifiers is extracted and shuffled. A running count of the annotations is computed.
The sequences are added to a list till the required annotation count is reached. The pro-
cess is repeated for the testing dataset. After selecting the training and testing sequences
the dataset entries of the selected sequences are stored to the disk in comma delimited
format.

3.7 | Summary
This chapter provided the detail of the setups and experiments conducted in this work.
In the definitions of the environment, the different components are defined in terms of
architecture and testing perform to verify the correctness of the implementation. The
next chapter reports and discusses experiment execution and results obtained.

69



4
Results andDiscussion

Chapter 3 defined the experiments and the required software architecture. The pro-
posed architecture was implemented, and experiments executed. This chapter reports
and discusses the experiment outcomes.

4.1 | Application of Genetic Algorithm to the Dataset
Automatic feature selection was executed on two species namely Homo sapiens and E.
coli. For each species, two ML techniques were utilised to evaluate GA chromosomes.
The following are the techniques and hyperparameters utilised:

� RF with Gini as the node splitting criterion, denoted as RF-Gini.

� RF with Entropy as the node splitting criterion, denoted as RF-Entropy.

� SVM with the misclassification penalty value set to 1.0, denoted as SVM-C1.0.

� SVM with the misclassification penalty value set to 0.1, denoted as SVM-C0.1.

The GA execution is a resource intensive process that takes a considerable amount
of time. Work was performed to speed up the GA chromosome evaluation through code
optimisation and parallelisation. Parallel chromosome evaluation required resource
management to avoid CPU starvation or memory swapping. Different ML techniques
have specific resource requirements. RF requires a large memory footprint to build the
trees and has inbuilt support for parallelisation. The SVM technique is CPU intensive
and does not support parallelisation. In order to cater for the different parallelisation re-
quirements, the degree of parallelisation used is governed by the configuration parame-
ter of the GA. Parallelisation of chromosomes evaluation reduced the overall execution
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Figure 4.1: Fmax across feature selection training epochs on Homo sapiens dataset.

Figure 4.2: Fmax across feature selection training epochs on E. coli dataset.
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ML Technique
E. coli Homo sapiens

Run time (h) Total time (d) Run time (h) Total time (d)

RF-Gini 1.590 0.330 6.880 1.410

RF-Entropy 2.210 0.450 11.200 2.290

SVM-C1.0 10.810 5.210 92.090 43.850

SVM-C0.1 10.350 4.990 87.630 41.860

Table 4.1: Genetic Algorithm run time details. The user time in hours, is the time elapsed
for the experiment process to finish. The total time in days, accounts for all the CPU
resources utilised on the experiment machine.

time. Table 4.1 reports the experiment timings, specifying the user process time and the
total CPU runtime. The SVM ML technique is a CPU intensive and takes a considerable
amount of time to train and generate predictions. All the runs for this experiment were
executed on the same type of machine to enable duration comparison.

Each GA chromosome identifies a set of features. The features are evaluated by train-
ing a classifier on the training dataset using the selected features. The trained classifier
is used to generate predictions for the validation dataset. The generated predictions are
evaluated using CAFA metrics, that considers the hierarchical structure of the GO DAG
and computes an Fmax value. Figure 4.1 illustrates the Fmax value of the different ML
techniques across the training epochs of Homo sapiens. The outcome of the experiments
performed on E. coli are illustrated in Figure 4.2.

The RF classifier had superior performance when compared to SVM both in terms of
performance as illustrated in Figure 4.1 and also in the required run time as per Table 4.1.
Two RF runs were reported, one using Gini as node splitting criterion and the other
using Entropy. The Gini run improved the Fmax by 0.010 and reduced the runtime by
four hours nineteen minutes. The two SVM runs with different penalty values (C) had
similar Fmax and run times. The work to speed up chromosome evaluation through
parallelisation reduced the run time considerably.

The features selected by the GA for Homo sapiens depend on the ML technique
utilised in the fitness function. The top 6 GA chromosomes for the RF-Gini classifier are
reported in Table 4.2. The top 6 chromosomes for RF with Entropy as splitting criterion
are reported in Appendix D Table D.2. The chromosomes for SVM with penalty values
of 1.0 are reported in Appendix D Table D.6, whilst chromosomes for the experiment
with SVM penalty value of 0.1 are reported in Appendix D Table D.4.

The top-ranking Homo sapiens chromosomes, have five features in common, orig-
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Table 4.2: Top 6 GA chromosomes for Homo sapiens taxon using RF-Gini as the ML tech-
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inating from ratios computed on protein family membership in protein classification
databases (PFAM and CATH). The information from protein databases, originated from
four ratios: all_go_prop_pfam (proportion of members of the same PFAM family with the
GO term) and all_go_prop_dc (proportion of proteins having the same protein/domain
with the GO term) and their strict variants. The fifth feature pfam_to_go is the flag that
indicates whether a PFAM to GO mapping exists.

The analysis of the top chromosomes of the RF-Gini method, shows a bias towards
the proportions computed on protein databases. The top 6 chromosomes include fea-
tures computed from protein databases and features computed from the protein se-
quence. The feature number_pfam_domains (is the number of PFAM domains associated
with this GO term) that is computed from protein databases was selected in five times of
the top 6 chromosomes. Two features computed from protein sequences: tmhmm (num-
ber of predicted transmembrane helices) and protein disorder information prefixed by
cider were selected five times.

Figure 4.2 reports the performance of the GA runs on the E. coli dataset. The reported
Fmax values show that RF was superior to SVM with an Fmax margin of 0.110. The RF
with Gini as node splitting criterion was the best performing ML model with an Fmax of
0.404. The RF entropy trailed behind with an Fmax of 0.398 and an increase of 20 minutes
in run time. The SVM runs obtained an Fmax of 0.274 and required eight hours of run
time. The different SVM penalty value did produce a negligible change in Fmax.

The top 6 GA E. coli chromosomes for the RF classifier using Gini as splitting crite-
rion are reported in Table 4.3. The top 6 chromosomes for RF using Entropy as splitting
criterion is reported in Appendix D, Tables D.1, for SVM using 1.0 as penalty value is
reported Appendix D Table D.5, whilst SVM with penalty value of 0.1 is reported in
Appendix D Table D.3.

Amongst the top 6 E. coli chromosomes, four features were constantly selected by the
GA. This set of features includes three features based on protein structural databases
and a flag. The three ratios are: all_go_prop_dc (ratio of proteins having the same do-
main/protein combinations), strict_go_prop_dc (considering only laboratory annotations)
and strict_go_prop_pfam (variant of all_go_prop_pfam considering only laboratory anno-
tations). The inclusion of strict ratios highlights that laboratory curated annotations are
include adequate information for PFP. The mapping flag pfam_to_go indicated whether
a mapping exists between PFAM to GO.

Further analysis of the top 6 E. coli GA chromosomes includes both additional ra-
tios based on the protein structural databases and also measurements computed on
the protein sequence. The top 6 chromosomes include more all ratios with respect to
strict, highlighting that all ratios provide more information for PFP. From the structural
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Figure 4.3: Performance of best chromosome on GA dataset and on testing dataset for
Homo sapiens.

Figure 4.4: Performance of best chromosome on GA dataset and on testing dataset for
E. coli.
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features available, the protein disorder information prefixed by cider and tmhmm were
included.

The four common dataset features selected by the GA runs on the two species are:
all_go_prop_dc, pfam_to_go, strict_go_prop_dc and strict_go_prop_pfam. The commonality
of the features indicates that the protein databases are effective in capturing functional
and structural information within protein families.

The “best” GA chromosome of each ML technique was tested against the test dataset.
Each ML technique was trained using the complete training dataset and predictions
were generated for the testing dataset which were evaluated using CAFA metrics. In
order to assess the generalisation of the ML models, the performance of the model is
reported both during GA run and also on the test dataset.

The Fmax of the Homo sapiens species on both validation dataset during the GA exe-
cution and on the test dataset is reported in Figure 4.3. All four ML methods generalise
well, as the Fmax obtained during the GA execution almost identical performance on the
test dataset. Both the validation and test dataset were unseen by the classifier. In case
of RF, the additional training data improved the Fmax of the classifier. The additional
training data was not beneficial for SVM as the classifier performance decreased slightly
(0.020).

The performance of the classifiers for E. coli is reported in Figure 4.4. The general-
isation of the ML models is good, as the performance on the GA validation dataset is
similar to that of the test dataset. The performance of RF-Gini and both SVM methods
improved marginally on the testing dataset. However, in case of RF-Entropy the Fmax

value decreased by 0.011.

ML Technique
E. coli Homo sapiens

Run time (d) Total time (d) Run time (d) Total time (d)

RF-Gini 0.200 1.200 0.750 4.400

RF-Entropy 0.250 1.470 0.900 5.300

SVM-C0.1 0.410 19.080 4.430 206.970

SVM-C1.0 0.420 19.480 4.660 220.020

Table 4.4: Experiment duration for genetic algorithm applied within cross validation.
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Figure 4.5: Fmax of GA applied within cross validation folds and on the pre-split training
dataset for E. coli.

Figure 4.6: Fmax of GA applied within cross validation folds and on the pre-split training
dataset for Homo sapiens.
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4.2 | Cross Validation of Feature Selection
This experiment internalises the GA within the cross validation folds to determine the
mean performance of the GA for a given ML technique. The training and validation
datasets were generated from the training dataset using k-fold cross validation with
k = 5, with 80% of the data used for training and 20% for validation. For each value of
k, the respective training and validation datasets were generated, feature selection was
executed, and the fold Fmax is computed. The final Fmax value is the mean Fmax across
all folds. Table 4.4 reports the time required to execute this experiment.

This experiment executed the GA within the cross validation loop for E. coli and
Homo sapiens. For each taxon, the following ML techniques were utilised:

� RF with Gini as the node splitting criterion, denoted as RF-Gini.

� RF with Entropy as the node splitting criterion, denoted as RF-Entropy.

� SVM with the penalty values set to 1.0, denoted as SVM-C1.0.

� SVM with the penalty values set to 0.1, denoted as SVM-C0.1.

The cross validation results of each taxon are illustrated in Figures 4.5 and 4.6. The
left part of the figure shows a violin plot of the Fmax at the end of the GA runs in each
fold. The violin plot shows the minimum, mean and maximum value of Fmax. The
thickness dimension of the violin plot shows the data distribution. The plot on the right
of the figure is a bar chart with the performance data of the GA runs using training and
validation dataset.

Figure 4.5 illustrates the performance of the cross validation experiment and the GA
Fmax of E. coli species. For the four ML techniques used, the Fmax value obtained during
the GA run was within the range of that obtained by the cross validation runs. This
illustrates the change in the dataset introduces a change in Fmax ranging from 0.020 to
0.040.

The cross validation and GA Fmax performance of the Homo sapiens is reported in
Figure 4.5. The Fmax of the GA using SVM to evaluate GA chromosomes was within
the range of the cross validation runs. The RF based methods were more susceptible
to variation of the dataset as the GA had a lower Fmax when compared to the cross
validation runs. The two methods RF-Entropy and RF-Gini had a Fmax lower by 0.020
and 0.010 respectively. The GA chromosomes and the cross validation GA chromosomes
for the two RF runs were analysed. The chromosomes of the runs show that the change
in the dataset shifted the GA towards different chromosomes.
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While analysing Figures 4.5 and 4.6, it stands out that the cross validation in E. coli
had a greater variance when compared to Homo sapiens. The main reason attributed
to this variance is size of the training dataset. Whilst the in case of Homo sapiens 7,677
training samples are used, the E. coli taxon had 2,120 training samples.

Figure 4.7: Neural network loss error during training epochs on E. coli dataset.

4.3 | Application of Neural Network to the Dataset
This experiment applied NN on the two taxonomy datasets namely E. coli and Homo
sapiens generated specifically for ML. In this experiment the training dataset was split
into eighty percent training and twenty percent validation. The NN was trained using
the training termination criteria set to terminate training if the error did not reduce for
three successive epochs. The experiment entailed using different hidden layers archi-
tectures. The convention used describe the neural network architecture is LhC, where h
is the hidden layer level and C is the neuron count. For example, a neural network with
two hidden layers, with the first layer of 700 and a second layer of 500 is represented as
L1700L2500.

During the training epochs, predictions for the training datasets were generated.
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Figure 4.8: Neural network loss error during training epochs on Homo sapiens dataset.

The predictions and the true labels were used to compute the error of the NN. The NN
optimiser uses the error to adjust the weights of the neurons. To optimise the training
time, each training epoch was split into mini batches of 200 to speed up network con-
vergence. The aim of the NN training phase is to reduce the network loss error to a
minimum.

Different NN architectures were trained for the two species, namely Homo sapiens
and E. coli. The loss error across the training epochs for the different NN architectures
is illustrated in Figure 4.7 for E. coli and Figure 4.8 for Homo sapiens.

The loss error of the network is reduced with the training epochs. The different
network architectures have been trained on the same dataset. The architecture con-
figuration effects the training time, number of training epochs required and minimum
network error. Smaller networks tend to require more training epochs and the loss er-
ror curve is smoother. In the initial phases of the training the rate of reduction loss
error reduction is large, however as the number of training epochs increases; the rate of
reduction decays. Table 4.5 shows the training time required for each network.

The training termination criteria was defined to terminate training after three suc-
cessive epochs that did not reduce the loss error. The increase of the loss error is visible
as a small increase at the end of the error loss line. Thus, the network with the smallest
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Architecture
E. coli Homo sapiens

Epochs Training time (h) Epochs Training time (h)

L1200 453 0.078 392 0.296

L1500 301 0.069 248 0.412

L1500L22000 84 0.061 139 2.700

L11000 219 0.099 183 0.425

L11000L22000 103 0.144 135 3.820

L12000 246 0.205 149 0.640

L12000L22000 188 1.084 121 5.315

L12000L22000L3200 171 0.530 105 2.424

L12000L22000L3500 177 0.785 162 6.564

L12000L22000L31000 116 0.191 88 3.096

L12000L22000L32000 121 0.287 93 5.104

Table 4.5: NN architecture training duration details.

error was the one at three epochs before training stopped. For example, a network that
stopped training at the k epoch, the epoch with least loss is k − 3. In order to use the
network as at epoch k − 3, during training each network stored. The storage required
to store the file for all architectures is considerably large (30-70GB), making experiment
scheduling more challenging.

To assess the performance of the different networks, the validation dataset was
utilised. The different neural network architectures were initialised and loaded with
the weights of the third epoch from the last. After loading the weights, the predictions
for the validation dataset were generated and evaluated using CAFA performance met-
rics.

For each set of inputs in the validation dataset, the NN outputs the predicted GO
term and confidence values. The CAFA evaluation metrics evaluate the prediction and
the respective confidence that determines the predictor’s Fmax at a specific confidence
threshold. Figure 4.9 reports the performance of the different neural architectures on the
E. coli validation dataset. The upper plot in the figure shows the Fmax obtained by the
specific architecture. The lower plot reports the confidence of which the corresponding
Fmax was obtained. From Figure 4.9 the different architectures had comparable Fmax,
between best and lowest Fmax are separated by 0.050. The different models had a con-
siderable variation in the confidence ranging from 0.070 to 0.250. The best performing
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Figure 4.9: Performance of neural network architectures on E. coli validation dataset.
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Figure 4.10: Performance of neural network architectures on Homo sapiens validation
dataset.
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Figure 4.11: Fmax of different neural network architectures on validation and testing
dataset E. coli.

Figure 4.12: Fmax of different neural network architectures on validation and testing
dataset Homo sapiens.
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Figure 4.13: Analysis of NN on Homo sapiens dataset.

Figure 4.14: Analysis of NN on E. coli dataset.
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architectures were L12000L22000L3500 and L12000L22000L3200. These two architectures
have slightly less Fmax, but the prediction confidence is 0.250 and 0.230 respectively.

The outcome of the tests performed on the Homo sapiens species is reported in Fig-
ure 4.10. The model with the least error loss was loaded and used to generate the pre-
dictions for the validation dataset. The predictions were evaluated using CAFA metric
and Figure 4.10 shows the result. Similar to the E. coli taxon the Fmax difference be-
tween the NN architectures was 0.040. From the confidence perspective, simpler net-
works tend to have lower confidence levels. The best confidence was obtained using
the L12000L22000L31000 architecture, followed by L12000L22000L3500.

Figures 4.9 and 4.10 show the performance of the different networking prioritising
the prediction confidence. Analysing Figure 4.9 shows that E. coli the deeper networks
have high confidence. Whilst for Homo sapiens this pattern has not emerged.

The performance of the NN architectures was tested on the test dataset to check the
generalisation performance. The different NN architectures were trained on the training
dataset of the specific taxon. Predictions were generated for the test dataset and the
performance was evaluated using the CAFA metrics. The Fmax on the validation dataset
and on the testing dataset is reported for E. coli in Figure 4.11, while and for Homo sapiens
the Fmax is reported in Figure 4.12. Both species generalise well as the Fmax obtained of
the validation and on the test dataset are similar. In the case of Homo sapiens all the NN
architectures had a better Fmax on the test dataset. Although the E. coli NN generalise
well, the small variations of the Fmax between the validation and the testing dataset can
be attributed to the small training dataset size.

The number of hidden layers affects different aspects of the neural network, re-
lated to training and predictive performance. For this purpose, the number of training
epochs, minimum network error, Fmax and prediction confidence were analysed from
the NN depth perspective. Figures 4.13 and 4.14 show the method information for the
Homo sapiens and E. coli trained neural networks. During training the deeper networks
require less training epochs and after training, the networks have less network error.
From the prediction performance perspective, the deeper networks have an Fmax lower
by 0.020 and 0.030 for Homo sapiens and E. coli respectively when compared to the one-
layer networks. Deeper networks have a superior prediction confidence when com-
pared to the one- or two-layer networks.
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Figure 4.15: Performance of the RF-Gini classifier trained on with different amounts of
Homo sapiens training data.
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Figure 4.16: Performance of the RF-Gini classifier trained on with different amounts of
E. coli training data.
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4.4 | Determine the Amount of Training Data Needed
This experiment aims to determine the amount of training data required by the classifier.
For this purpose, the best performing chromosome for each taxonomy identified by
the automatic feature selection was selected. For each taxon, the training dataset is
increased in steps of 500 samples and the testing dataset is kept constant. Figure 4.16
shows the experiment findings for Homo sapiens, while Figure 4.15 shows the findings
for E. coli.

Each figure plots the classifier performance in terms of Fmax and prediction confi-
dence as computed by the CAFA evaluation metrics and training coverage against the
training dataset size. Coverage is the number of unique GO terms that the classifier is
able to predict.

The predictor’s performance improves as training samples increases as shown in
the Fmax subplot of Figures 4.15 and 4.16. The increase of training samples increases
the number of different GO terms (coverage) that can be predicted. Coverage increases
linearly with the number of training samples. The increase in coverage enables the pre-
diction of more GO terms, however the lack of sufficient training data of the new GO
terms decrease the prediction confidence. This is graphically illustrated in the probabil-
ity subplot in Figures 4.15 and 4.16.

The Homo sapiens predictor achieved an Fmax of 0.575 with 9,500 training samples,
whilst the E. coli predictor scored an Fmax of 0.390 with 2,500 training samples. How-
ever, with 2,500 training samples, the Homo sapiens predictor had an Fmax of 0.450. The
relation between Fmax and classifier is analysed. At coverage equal 1,000, the E. coli clas-
sifier required 2,400 samples available, whilst the Homo sapiens classifier required 3,500.
With this coverage, the Fmax for E. coli was 0.380 and that for Homo sapiens is 0.425.
This illustrates that additional training samples can further improve the predictor per-
formance. This is also further reinforced by the gradient of the Fmax line within both
plots. For both taxonomies, the gradient of the Fmax line decreased slightly but is still
away from approaching a plateau. This highlights that for both taxonomies additional
training samples can potentially improve classifier performance.

4.5 | Cross SpeciesModel Experiments
This control experiment applied two species trained classifiers to proteins originating
from different taxonomies. For this experiment the most performant ML technique, RF
using Gini as splitting criterion was utilised (RF-Gini). The ML classifier was trained
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Figure 4.17: Fmax performance of Homo sapiens trained classifier applied on different
taxa.
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Figure 4.18: Fmax performance of E. coli trained classifier applied on different taxa.
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on the training data using the top performing GA chromosome. The trained classifier
was used to perform cross species prediction. The expected outcome of the experiment
is that the classifier performance will decrease as the distance between taxonomies in-
creases.

Figure 4.17 illustrates the performance of the classifier trained on Homo sapiens data
and applied to other species. The classifier performs well on Eukaryote taxonomies that
are evolutionary near to Homo sapiens. The performance of the classifier starts to decay
as the evolutionary distance increases. The lowest Fmax on the Eukaryote is 0.390, whilst
the highest Fmax on Bacteria is 0.300.

The E. coli trained classifier was trained and applied on the dataset for other tax-
onomies. The performance is reported in Figure 4.18. The classifier’s best performance
was on Bacteria domains, with an Fmax of 0.410. The performance of the classifier de-
creased on Eukaryote organisms with Fmax ranging from 0.360 to 0.210.

4.6 | Summary
This chapter reported and discussed the findings of the different experiments. The first
section reported the results of the feature selection that was executed on the two taxa,
namely Homo sapiens and E. coli. The results include the performance metric on the val-
idation dataset and as information related to execution time. Different aspects of the
techniques such as execution time were reported. The next section applied GA within
the cross validation loop to measure the classifier performance when trained with dif-
ferent data. The next section tackled the application of NN on the two species specific
datasets. Different architectures were experimented on both datasets. For each NN the
loss error is reported during the training epochs. Neural network training was con-
figured to stop training if the loss error fails to reduce after three successive epochs.
Consequently, the third epoch from the last was the epoch with least loss error. This
epoch was selected to benchmark the network using the validation dataset. The next
section investigated the effect of the training dataset size on the classifier performance.
The training dataset size was increased in steps of five hundred and the classifier Fmax,
Fmax confidence and coverage were reported. The final experiment is a controlled ex-
periment, whether the species-specific classifier is applied to other species. The next
chapter reports the work carried out to evaluate the work against CAFA submissions.
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Evaluation

The outcomes of the defined experiments were reported and discussed in the previous
chapter. In order to gauge the effectiveness of the work performed it must be benchmark
against other work using the same methodology. This chapter details the evaluation
protocol and evaluates the work against other CAFA submissions.

5.1 | Evaluation Protocol
Protein annotations are represented in biological databases using GO terms defined in
the GO DAG. An important aspect of protein annotations is the concept of hierarchy,
that enables description of generic and specific functionality. Laboratory experiments
add annotations to proteins that were proven in the lab using specific protocol. In some
cases, experiments evidence lack of functionality, thus remove annotations that are not
observed in the laboratory. Further different experiments on the same protein add func-
tionality that was not observed before using more specific annotation term from with
the GO DAG, possibly extending the GO DAG to cover the functionality observed in
the experiments.

The motivation of the CAFA shared task protocol, is to gauge the status of Protein
Function Prediction (PFP). To measure the effectiveness of PFP methods, their perfor-
mance must be measured against verified ground truths. The CAFA shared task is set up
to replicate the environment whereby a classifier is used to predict the protein function
that is not yet experimentally annotated. The performance of the method is measured
after the experimental curation confirms the function or the lack thereof. The CAFA
evaluation framework is described in section 2.9.
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5.2 | CAFA EvaluationMetrics
The CAFA evaluation uses three metrics defined in section 2.9.2 to benchmark submis-
sions. For each submission, CAFA reports three metrics, the Fmax, the semantic distance
Smin and predictor coverage. Using these three figures the performance of the predictors
can be compared.

pr(τ) =
1

m(τ)

m(τ)

∑
i=1

∑ f 1( f ∈ Pi(τ) ∧ f ∈ Ti)

∑ f 1( f ∈ Pi(τ))
(2.26)

rc(τ) =
1
ne

ne

∑
i=1

∑ f 1( f ∈ Pi(τ) ∧ f ∈ Ti(t))

∑ f 1( f ∈ Ti(t))
(2.27)
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τ

2.pr(τ).rc(τ)
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(2.28)
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1
ne

ne

∑
i=1

∑
f

ic( f ).1.( f /∈ Pi(τ) ∧ f ∈ Ti) (2.29)

mi(τ) =
1
ne

ne

∑
i=1

∑
f

ic( f ).1.( f ∈ Pi(τ) ∧ f /∈ Ti) (2.30)

Smin = min
τ

√
ru(τ)2 + mi(τ)2 (2.31)

where:

Pi(τ) = the set predicted with score equal or greater than τ for a protein sequence.
Ti = the true positive set the sequence.
m(τ) = the number of sequences with at least one score greater than or equal to τ.
1 = the indicator function that returns 1 when the condition is true otherwise 0.
ne = the number of targets in evaluation.
ic( f ) = the information content for term f .
τ = a value for 0.01 to 1.00 incremented by 0.01.

The precision metric defined in equation 2.26 assesses the performance of the clas-
sifier in terms of correctly predicted terms in respect to all predictions. Whilst recall
metric defined in equation 2.27 assesses the performance in terms of correctly predicted
terms in respect of ground truths. The Fmax metric defined in equation 2.28 is the har-
monic mean of precision and recall metrics. The value of Fmax ranges between zero and
one, with one being the Fmax value of the ideal classifier and zero for a poor classifier.

CAFA reports the Fmax results using two visualisations a bar chart or using a precision-
recall curve. The precision-recall curve is more informative as it illustrates the precision
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and recall values of the classifier and the respective Fmax value as a contour. During eval-
uation the predictor annotations are filtered based on the confidence interval generating
a series of precision and recall values. These values are plotted on the precision-recall
curve, highlighting the best Fmax value. For evaluation purposes, the predictor Fmax

value is the highest Fmax at the highest prediction confidence (Jiang et al., 2016).
The semantic distance Smin computes an information theoretic metric based on the

GO DAG structure and a Bayesian probabilities. The semantic distance Smin metric is
based on the misinformation metric defined in equation 2.30 and remaining uncertainty
metric defined in equation 2.29. These two metrics assess the performance of the classi-
fier in terms of excessive information predicted (to highlight predictor over prediction)
and missing annotations (to highlight lack of predictions). The semantic distance Smin

is the euclidean distance of the misinformation and remaining uncertainty metrics from
the origin as defined in equation 2.31. The value of semantic distance is unbounded,
however the lower the value the better the classifier performance.

CAFA computes the performance of the classifier at different predictor confidence
intervals generating multiple misinformation and remaining uncertainty values. CAFA
reports Smin using two visualisations types, a bar chart and a remaining uncertainty-
misinformation (RUMI) curve. The RUMI curve provides a better picture as the Misin-
formation and Remaining Uncertainty are plotting and the Smin is shown as a contour.
The semantic distance considered for the evaluation is the minimum value of semantic
distance value at the highest prediction confidence (Jiang et al., 2016).

The third aspect tackled by the CAFA evaluation is predictor coverage. The bench-
mark set is the set of annotations that will be used for evaluation. The predictor perfor-
mance will be evaluated on the benchmark set annotations. The coverage is the ratio of
the benchmark set the predictor can predict. The ideal predictor will have a ratio of one,
implying that all the terms in the benchmark set can be predicted by the classifier (Jiang
et al., 2016).

5.2.1 | Approach
Within the CAFA shared task, the time elapsed between the prediction generation (by
the participants) and the execution of the evaluation is around six months. The aim was
to evaluate this work against CAFA3 shared task, however this option was not possi-
ble as the ML features computed for the CAFA3 targets were not available. Following
communication with Dr Lees, a dataset with the protein features for CAFA3 targets was
made available. This dataset was used to generate species-specific datasets, namely
Homo sapiens and E. coli to evaluate the different models. The selected methods for each

95



Chapter 5. Evaluation 5.2. CAFA EvaluationMetrics

ML were used to generate predictions for the CAFA3 targets. The CAFA performance
metrics were generated for each model.

The paper reporting the results of the CAFA3 shared task was not available from
the CAFA shared task website1. An enquiry for the CAFA3 results was sent via the
CAFA website. Prof. Iddo Friedberg (the contact person for CAFA) replied stating that
the paper is currently works in progress and currently aiming to publish a pre-print
format in a couple of months. Email exchange with Prof Iddo Friedberg is detailed in
Appendix E.

In view of these constraints, the work will be evaluated using the prediction of the
CAFA3 targets against the CAFA2 published results per taxonomy. This option offers a
good indication of the performance of the models.

5.2.2 | Evaluation Protocol Used
To replicate the CAFA evaluation protocol, the annotations of the CAFA3 targets used
in the prediction and evaluation phase must originate from a more recent version of
QuickGO. Different versions of QuickGO are available from EMBL-EBI FTP site2. The
evaluation protocol used was:

1. Use the species-specific datasets generated in the experimentation phase for train-
ing. These datasets are based on annotations of QuickGO version 124.

2. Train the ML methods using dataset features identified by the GA and the NN ar-
chitectures identified during the experimentation phase with the training dataset
identified in step 1.

3. Using the process outlined in section 3.5, generate two species-specific datasets for
the CAFA3 targets, based on annotations of QuickGO version 152.

4. Using the methods trained in steps 2 generate the predictions for the datasets gen-
erated in step 3.

5. Generate the true positive set for the CAFA3 targets for each species based on
QuickGO version 161. The outcome of this step is a true positive set for each
species.

6. Evaluate the predictor performance using the predictions generated in step 4 and
true positive set generated in step 5.

1https://biofunctionprediction.org/cafa/ (Accessed 2018-12-30)
2ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/old/UNIPROT/ (Accessed 2018-12-28)
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Dataset usage Ground Truths (GT) GT GO DAG

Training QuickGO version 124 2013-10-15

Prediction QuickGO version 152 2016-06-01

Evaluation QuickGO version 161 2017-01-01

Table 5.1: Data sources used in evaluation.

The GO DAG provides the vocabulary used to describe protein functionality. A con-
sequence of this is that functionality not described in the GO DAG cannot be described.
For this purpose, the GO DAG is updated through a pre-defined protocol to include
new functionality as it is observed in the lab. The different GO DAG versions are avail-
able from Gene Ontology FTP site3. The QuickGO annotations of the CAFA3 targets in
the evaluation dataset require a more current version of GO DAG as per Table 5.1.

The functionality described in more recent version of QuickGO, requires a more
current GO DAG. The rate of change within the GO DAG is low. The GO DAG dated
2016-06-01 has 10,236 GO terms and 672 GO term synonyms for the molecular function
ontology. Whilst version 2017-01-01 of GO DAG released six months later has 10,543
GO terms and 687 GO term synonyms. Over a period of six months, 307 (0.030%) new
GO terms were added to the GO DAG.

Taxon QuickGO Sequences Unique GO terms Missing Terms

E. coli 161 339 478 0

Homo sapiens 161 1,051 1,159 5

Table 5.2: True positive set GO terms existence in GO DAG 2016-06-01.

The functionality described in the more recent versions of GO DAG is inexistent in
older GO DAG versions. In order to determine whether the true positive set generated
based on QuickGO version 161 can be represented using the GO DAG as at prediction
date. Table 5.2 reports the findings.

The GO terms in the true positive set used to describe the functionality of the E. coli
taxon (based on QuickGO 161) can be represented in the GO DAG 2016-06-01. This is
not the case for Homo sapiens, whereby five GO terms used to describe the function in
QuickGO 161 does not exist in the GO DAG version aligned with QuickGO 152.

3ftp://ftp.geneontology.org/go/ontology-archive/ (Accessed 2018-12-28)
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GO term in true positive set Replaced with parent GO term

GO:0002950 GO:0016780

GO:0097726 GO:0019904

GO:0102077 GO:0016811

GO:0102549 GO:0052689

Table 5.3: GO terms replaced in the true positive

The evaluation process needs to factor in the new annotation information acquired
during the time lapse. For this purpose, the true positive set must be modified to retrofit
the new information using the training version of the GO DAG. Whilst generating the
true positive dataset to be used for evaluation from the QuickGO dataset, GO terms that
do not exist in the training GO DAG are replaced with their immediate parent (more
generic term). Table 5.3 lists the GO terms replaced in the true positive set.

In view of the rate of change of the GO DAG which is 0.030% in six months, the
amount of error introduced by substituting GO terms with a more generic parent is
negligible. Further in the evaluation phase, the error is minimised as all the terms to the
ontology root will be part of the sub graph through term enrichment. Only the more
specific term will be omitted as it is inexistent on the GO DAG.

5.3 | Model Performance Assessment
The ML models for Homo sapiens were evaluated on the CAFA3 evaluation data using
the annotations present in QuickGO 161. The performance of the Homo sapiens models is
reported as precision-recall curves in Figure 5.1(a) and as RUMI curves in Figure 5.2(a).

The Homo sapiens precision-recall curves show that the best Fmax was achieved by
the RF-Gini classifier. An interesting aspect of the performance of the models is that the
two RF models score the same Fmax. Whilst the two SVM methods are separated by an
Fmax of 0.02. This highlights that the ML tuning performance, had a minor impact on
the classifier performance. In the case of NN, the different architecture separated the
two methods by an Fmax of 0.05. In the precision-recall curve, the methods are grouped
per ML technique, with RF being the best, followed by NN and SVM.

The CAFA evaluation uses semantic distance (Smin) to report the performance of the
classifier through RUMI curves. Figure 5.2(a) shows the RUMI curve of the Homo sapiens
methods. The best methods have the lowest Smin. Similar to the precision-recall curve,
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(a) Precision-recall curve for Homo sapiens trained methods.

(b) Precision-recall curve for Homo sapiens CAFA2 submissions, reproduced from Friedberg et al. (2016).

Figure 5.1: Precision-recall curve for Homo sapiens trained methods and CAFA2 submis-
sions. The best Fmax is illustrated with a dot. The legend shows method description,
best Fmax (F) and predictor coverage (C).
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(a) RUMI curve for Homo sapiens trained methods.

(b) RUMI curve for Homo sapiens CAFA2 submissions, reproduced from Friedberg et al. (2016).

Figure 5.2: RUMI curve for Homo sapiens trained methods and CAFA2 submissions. The
best Fmax is illustrated with a dot. The legend shows method description, best Smin (S)
and predictor coverage (C).
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(a) Precision-recall curve for E. coli trained methods.

(b) Precision-recall curve for E. coli CAFA2 submissions, reproduced from Friedberg et al. (2016).

Figure 5.3: Precision-recall curve for E. coli trained methods and CAFA2 submissions.
The best Fmax is illustrated with a dot. The legend shows method description, best Fmax
(F) and predictor coverage (C).
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(a) RUMI curve for E. coli trained methods.

(b) RUMI curve for E. coli CAFA2 submissions, reproduced from Friedberg et al. (2016).

Figure 5.4: RUMI curve for E. coli trained methods and CAFA2 submissions. The best
Fmax is illustrated with a dot. The legend shows method description, best Smin (S) and
predictor coverage (C).
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the methods are group by ML methods, whereby the best performance was that of RF,
followed by NN and SVM. From the RUMI curve it can be noted that the different
classifiers have a low misinformation rate indicating that the predictions done were
close to the true positive set. However, the high remaining uncertainty, shows that the
classifiers are missing predictions. An interesting aspect illustrated by the RUMI curve
is that RF has the lowest remaining uncertainty, followed by NN and SVM. On the other
hand, the SVM with penalty set to 1.0 (SVM-C1.0) had the lowest misinformation whilst
the NN had the highest misinformation.

The coverage of the Homo sapiens models is 0.66. This implies that the classifiers did
not have knowledge of 33% of the GO terms present in the evaluation dataset.

The performance of the E. coli classifier is reported as precision-recall curve in Fig-
ure 5.3(a) and as RUMI curve in Figure 5.4(a). The best performing model on E. coli is
the Fmax of 0.76. From the precision-recall curve the different ML methods are grouped
tightly within an Fmax of 0.02. The best method was the RF, followed by NN with an
Fmax difference of 0.04 and trailing behind is the SVM method with an Fmax difference
of 0.39. The RF method has a precision of 0.9, implying that most of the predictions are
correct.

The performance of the methods is evaluated using the RUMI curves is reported in
Figure 5.4(a). From the RUMI curve the performance difference of the models confirmed
with RF being the best method, followed by NN and SVM. The good prediction per-
formance of the RF is confirmed by a low misinformation. Similar to the Homo sapiens
models the predictors have a high remain uncertainty.

The coverage of the E. coli classifiers is 0.76, improves the likelihood of better predic-
tion performance. The classifiers have higher precision in the precision-recall curve and
lower misinformation in the RUMI curve, when compared to the Homo sapiens counter-
part.

The Homo sapiens and E. coli RF models, have superior Fmax and Smin when compared
to the respective NN and SVM models. The performance advantage of the RF models
may originate from a better fitting of the data being used in this study.

5.4 | Performance Assessment in CAFA
In the CAFA shared task evaluation, community submissions are evaluated against the
proteins that acquired manually curated annotations. These annotations are used to
generate the true positive sets (ground truths) for the evaluation process. Each CAFA
submission consists of a file that contains the predictions in CAFA format. The for-
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mat mandates three fields: the CAFA target sequence identifier, the predicted GO term
and the prediction confidence. The prediction confidence is generated by the technique
utilised to generate the predictions.

The CAFA organisers report the performance of the models for each of the three GO
ontologies. The prediction performance is taxon specific, thus the CAFA shared task
evaluation generates performance metrics per taxon such as E. coli and Rattus and per
domain such as Eukaryote, Bacteria and Archaea.

The CAFA results include two baseline methods, Naïve and Blast. The Naïve method
is based on term frequency, whilst Blast assigns GO term using sequence similarity com-
puted based on sequence alignment. The baseline methods are included in the CAFA
figures together with the top 10 methods performing submission for the target taxon
or domain. In the CAFA visualisations, the twelve methods are listed ranked from best
performing down to the tenth best performance and the two baseline methods. For each
submission the visualisation shows the name of the submission is shown together with
the best performance and the coverage of the method.

The precision-recall curve for the top 10 Homo sapiens is reported in Figure 5.1(b)
and the remaining uncertainty-misinformation curve is reported in Figure 5.2(b). Com-
paring the performance of the top 10 CAFA2 models reported in Figure 5.1(b), the RF
models reported in Figure 5.1(a) would rank first by an Fmax improvement of 0.01. The
best model in the CAFA2 evaluation is the MS-kNN, that achieved an Fmax of 0.63 with
a coverage of 0.98. The slightly higher Fmax of the RF-Gini method is attributed to an im-
provement of both precision and recall. The best NN model would have ranked fourth
achieving an Fmax of 0.57 which is at par with the Orengo-FunFHMMer-mda submis-
sion. The best SVM based method achieved an Fmax of 0.37 which was comparable to
the Naïve method.

The RUMI curves for the trained predictors and the CAFA2 submission are reported
in Figure 5.2(a) and Figure 5.2(b) respectively, show that the CAFA2 submissions are
superior. The semantic distance of the CAFA2 submissions is between 7.10 and 9.65,
whilst the 6 models evaluated had a semantic distance between 14.71 and 23.92. From
the RUMI curve, the misinformation for the RF-Gini model is 4.1, which is on the upper
bound of the top 10 submissions of the CAFA2. The remaining uncertainty of all the
models is high ranging from 14 to 24, whilst the values top 10 CAFA2 models range
from 7 and 10. This shows that although the classifier is comparatively good in making
predictions, the predictors are missing predictions.

The precision-recall curve for the top 10 CAFA2 submissions for E. coli is reported in
Figure 5.3(b). Comparing the performance of the models against CAFA2 submissions,
shows that the best model with an Fmax of 0.76 is superior to the best method Jones-
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UCL that has an Fmax of 0.60. Analysing the classifier performance, it shows that the RF
classifiers have a precision of 0.90 and 0.86, which is 0.25 higher than the best CAFA2
submission. The best recall was achieved by RF-Entropy 0.63, which is at par with the
best CAFA submission of the E. coli species.

The RUMI curve for the top 10 CAFA2 E. coli submissions is reported in Figure 5.4(b).
The CAFA2 submissions have a lower Smin when compared to the six methods. The 10th
best performing submission has an Smin of 6.88, whilst the best performing method RF-
Gini has an Smin of 8.94. The six models have a high semantic distance ranging from
8.94 to 20.952. Analysing the RUMI curve of the six methods, highlights that the misin-
formation is lowest for the RF based method with values ranging from 2.3 to 2.8, which
is in line with the performance of the top 4 CAFA2 methods. The remaining uncertainty
for the six method ranges from 8 to 21, whilst that of the CAFA2 submission ranges from
4 to 8.5. This highlights that the six classifiers are missing protein annotations.

The high values of remaining uncertainty warranted further investigation to de-
termine the cause to such high discrepancy in the RUMI curve. For this purpose, the
dataset for the CAFA3 targets and the true positive set generated on QuickGO 161 were
analysed, as follows:

1. For each sequence, in the true positive set and in the CAFA3 prediction target
dataset:

a) For each annotation in the CAFA3 prediction target dataset, the enriched sub-
graph is extracted from the GO DAG version 2016-06-01. In case multiple an-
notations exist for the protein sequence, the subgraphs, are merged into one
subgraph.

b) For each annotation in the true positive set, the enriched subgraph is ex-
tracted from the GO DAG version 2016-06-01. In case multiple annotations
exist for the protein sequence, the subgraphs, are merged into one subgraph.

c) Subtract from the true positive set sub graph the CAFA3 prediction target
subgraph. The resulting set of GO terms are missing from the CAFA3 predic-
tion target dataset.

From the results reported in Table 5.4, 38.9% of the subgraphs for Homo sapiens are
different, whilst for E. coli 29.5% of the subgraphs are different. The subgraph analysis
reports the number of missing GO terms per taxon. These missing annotations originate
from different levels within the GO DAG as per Figure 5.5.

The remaining uncertainty is high for both taxonomies as per Figure 5.2(a) for Homo
sapiens and Figure 5.4(a) for E. coli. The fact that the evaluation dataset did not have
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Taxon Same subgraphs Different subgraphs Missing GO terms

Homo sapiens 642 409 1,946

E. coli 239 100 489

Table 5.4: During evaluation, two subgraphs are constructed, one for the test dataset
and another of the true positive set. This tables analyses the subgraph differences per
sequences and counts the GO terms that are missing in the testing subgraph. These
terms are contributing to the high remaining uncertainty value in the RUMI curves.

Figure 5.5: The GO subgraphs of the true positive set and evaluation datasets were
generated and enriched. To identify missing GO term, the evaluation dataset was sub-
tracted from the true positive set. The figure illustrates the GO term count and the GO
level of terms in the GO DAG.
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prediction data caused the predictor to skip annotations, which in turn increased the
remaining uncertainty.

The evaluation of the models against CAFA2 submission show that the features se-
lected by the GA have a strong correlation with the GO term. Prediction performance
of E. coli and Homo sapiens species using species-specific classifiers achieved an Fmax

above the top 10 CAFA submissions for the species. An interesting aspect of the results
is that the top Homo sapiens chromosome reported in Table 4.2 has eleven features of
which eight originate from structural protein databases. The top E. coli GA chromo-
some reported in Table 4.3 has ten features, of which seven originate structural protein
databases. From the results obtained, structural protein databases are effective is cap-
turing protein information. The performance achieved by the E. coli classifier highlights
that data for the Bacteria domain is more informative when compared to Homo sapiens
because the best E. coli model improved Fmax of the best CAFA2 submission by 0.16.

5.4.1 | Evaluation Limitation
The work was evaluated the CAFA3 targets against the CAFA2 submissions. This ap-
proach was utilised due to unavailability of the ML data for the CAFA2 targets and the
CAFA3 results. The evaluation performed followed the CAFA evaluation protocol and
provides an indicative benchmark for the work performed.

The CAFA evaluation assesses submissions using the annotations acquired during
the annotation phase. The benchmark set used to evaluate the proteins might contain
annotations that are described in the evaluation GO DAG but were missing in the GO
DAG during the prediction phase. This can penalise submissions as the models are
unable to predict a GO term that does not exist.

5.5 | Summary
This chapter presented the evaluation protocol used to evaluate the work performed.
The protocol included information on training, testing and true positive datasets, eval-
uation procedure and presentation of the results. The results obtained were analysed
and critically compared to CAFA2 submissions. The concluding chapter of this disser-
tation discusses the results in terms of the objectives set in the outset.
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6
Conclusions

This chapter analyses the outcomes in view of the defined aims and objectives. The first
section analyses each objective and how the work performed addresses the objectives
and subsequently the aim of this dissertation. The second section criticises the approach
used and highlights limitations of the work. The third section reports further improve-
ment to the work performed. The fourth section gives a high level statement of the work
performed highlighting the main contribution.

6.1 | Achieved Aims andObjectives
This study investigated the application of ML techniques to improve protein function
prediction. The work carried out in this study will be analysed to identify the contribu-
tions.

The research uses automatic feature selection on the training dataset to identify
strongly correlated features with functionality labels (GO terms). Automatic feature
selection was applied on two species-specific datasets, namely Homo sapiens and E. coli.
Automatic feature selection evaluated the selected feature sets using a fitness function.
In turn the fitness function used two ML techniques to evaluate performance of the
selected features. The first ML technique used was RF that was executed with two dif-
ferent node splitting criterion, namely Entropy and Gini. The second ML technique
used was SVM that was executed with two penalty values (C) 0.1 and 1.0. The four runs
were executed for each species-specific dataset.

The top performing ML technique for both taxonomies was RF with Gini as node
splitting criteria (RF-Gini). The features selected for the two species are different. Anal-
ysis of the top six feature sets selected by the GA show common features exist amongst
the two species. These common features can be used as the basis on PFP classifiers for
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other species. The domain is a biological classification level that classifies organisms
based on cell structure. The interesting aspect of the identified feature set is that the two
species tackled originate from two different domains, Eukaryote for Homo sapiens taxon
and Bacteria for E. coli taxon.

The feature selection process was subjected to cross validation to determine the sen-
sitivity of feature selection process to dataset changes. The experiment entailed splitting
the training dataset into training and validation datasets using k-fold cross validation
with k=5. For each fold, the automatic feature selection was executed and the Fmax of the
fold was determined. The cross validation Fmax was the mean of the Fmax of each fold.
The experiment was executed for the two species specific datasets. For each dataset the
following four ML runs were executed: RF using Entropy and Gini as node splitting cri-
terion and SVM with to penalty values (C) 0.1 and 1.0. The experiment results showed
that the Homo sapiens runs had less sensitivity to the dataset changes when compared
to E. coli. The results of the automatic feature selection were compared to the cross val-
idation runs, to determine if the value obtained was within the cross validation values.
The E. coli automatic feature selection was within the range cross validation runs for
both the RF and SVM runs. In the case of Homo sapiens, the RF cross validation runs
performed slightly better results when compared to the automatic feature selection per-
formance. Analysis of the features evaluated on both runs showed that the variations in
the datasets cause different feature sets to the evaluated.

The training data size experiment was executed on Homo sapiens and E. coli using the
features selected by automatic feature selection. For both species the best ML technique
was RF using Gini as node splitting criterion. This experiment varied the size of the
training dataset and kept the testing dataset constant. The training dataset started from
five hundred annotations and increased in increments of five hundred. The experiments
of the training dataset size showed that both classifiers exhibit similar performance with
the same amount of training data. The Homo sapiens has superior performance as more
data was available. For both classifiers the performance curve did not plateau with
additional training data, thus are most likely to benefit with more training data.

The applicability of species specific ML models across different species was exper-
imented. The experiment entailed training a species-specific model and use it to per-
form predictions of other species. This experiment was executed for the two species,
namely Homo sapiens and E. coli. The outcome of the experiment confirmed the intuition
that Homo sapiens ML model performed better on Eukaryote domain, whilst E. coli ML
model perform better on Bacteria domain. The classifier’s performance decreases as the
evolutionary distance between species increases.

The ML models were evaluated on predictions of the CAFA3 targets against the
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CAFA2 submissions. The performance of the methods varied per ML technique, the
RF has the best performance followed by NN and SVM for both species. In the case of
Homo sapiens, the RF classifier ranked at par with the best submission, whilst the E. coli
classifier, out-performed the best CAFA2 submission. The results highlight the richness
of features originating from structural protein databases.

The objectives defined in the outset were thoroughly investigated and fulfilled for
both Homo sapiens and E. coli species, achieving the pre-defined aim of improving pro-
tein function prediction through ML techniques. The results obtained in the experimen-
tation phase, confirmed that applying the RF technique on the provided datasets for
the Homo sapiens and E. coli species achieved reliable PFP at par and better than CAFA2
submissions respectively.

6.2 | Critique and Limitations
The work in this dissertation was evaluated, with limitations, against CAFA shared task.
Evaluation against CAFA2 shared task was not possible as the ML data for the CAFA2
targets was unavailable. In case of CAFA3 evaluation, the ML data for CAFA3 targets
was made available by Dr Lees a member of Orengo Group at University College Lon-
don (UCL). However, the CAFA3 results paper was not available and will be available
in preprint format within months as per communication in Appendix E. In view of these
constraints, the results reported for CAFA3 targets were paper evaluated against CAFA2
shared task results.

The dataset provided by Dr Lees, consists in protein identifier, GO terms and a set
of features describing the protein. Proteins are associated with a number of GO terms
that describe the protein functionality. Some of the features in the dataset are linked
to the protein sequence whilst others are linked to the domains. The dataset includes
protein identifier but lacks CATH and PFAM domain identifiers. The missing domain
information hindered the inclusion of other sources such as PPI and CATH FunFam.

In order to perform PFP for a new protein, the dataset features for the new protein
must be computed. Assuming that the protein is originating from Homo sapiens or E. coli,
the feature set to use in ML has already been identified by automatic feature selection.
However, a limitation of the current system is that it lacks the pre-processing pipeline
necessary to create the features from the protein sequence. Due to this limitation the
system is unable to perform PFP to an unknown protein. This issue can be tackled by
creating the necessary infrastructure to generate the datasets for this work.

A potential issue in handling new proteins is that the dataset contains features com-
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Chapter 6. Conclusions 6.3. FutureWork

puted on protein families with PFAM and CATH. The family membership can be iden-
tified using a PFAM scan available from PFAM FTP site1 and CATH Genomescan tool
available from UCLOrengoGroup Github2. Both tools utilise HMM profiles to identify
potential family membership using protein sequences. Even though the coverage of the
protein databases is growing, there exists the chance that matches are not found inhibit-
ing the feature computation.

In this work, the training data was used to train ML models to perform PFP. The
performance of the ML models is dependent on the data used for training. The coverage
of the ML classifier is determined by the distinct labels in the training data. This implies
that the ML predictor would be unable to predict GO terms that are not present in the
training dataset. Thus, the proposed solution can be used to predict GO terms from
within the training dataset coverage. The ability to predict functionality that is yet to be
discovered is further hindered by the inclusion of the GO term in the GO DAG.

This work builds a species-specific predictor to perform PFP. From the experiments
performed it was shown that sufficient data for the given taxonomy is required to per-
form reliable PFP. In the case of Homo sapiens even through the classier performance
did not plateau as the training data was increased, the classifier performed at par on
the Fmax with the top CAFA2 submissions. On the other hand, in case of E. coli, experi-
ments showed that classifier may benefit from additional data. The experiment of cross
species models showed that the model works well as long as the species are evolution-
ary close. Although the model can be utilised to perform cross species predictions, the
work does not perform checks on the applicability of the GO term to the target species.
A consequence of this is that it may predict invalid GO terms for the target species.

6.3 | FutureWork
Part of this work executed feature selection using a fitness function that evaluates the
GA chromosome fitness using RF and SVM ML techniques. For each ML technique
two parameters were experimented to achieve better predictor performance. In case of
SVM more work is required to experiment with different penalty values. Within this
dissertation, limited hyperparameter experimentation was performed due to time and
resource constraints.

This work is based on the dataset provided by Dr Jon Lees. This dataset enabled this
research to get to speed and focus on the implementation of the necessary infrastructure.

1ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/ (Accessed 2018-12-30)
2https://github.com/UCLOrengoGroup/cath-tools-genomescan (Accessed 2018-12-30)
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Chapter 6. Conclusions 6.3. FutureWork

Given enough time and resources, it would have been beneficial to build the dataset as
part of this work. The main rationale being that more data could have been used and
thus enabling this research to tackle different species and run evaluation against all the
annotated CAFA targets.

The system developed operates in batch mode, whereby the ML models are trained
and used to generate predictions. In order to improve the accessibility of the system,
further work is required to change the operating mode to be web enabled. Through the
online web portal, the user can perform PFP for Homo sapiens and E. coli species from the
CAFA3 targets. The portal will utilise pre-trained models and generate predictions. The
results can be presented to the user as: a visualisation, a table or in CAFA format. To fa-
cilitate environment deployment, the prediction environment should be made available
as a Docker3 image. The docker image should be made public to enable researchers to
download to the image and make predictions offline. To public web portal can be of-
fered by deploying the docker image on a public hosting service such as Amazon Elastic
Container Service4.

Automatic feature selection was used in this work. This area can be explored further
by using different feature selection approaches such as recursive feature elimination.
Exploring multiple feature selection methods enables comparison of feature-sets and
PFP method performance.

This work used the datasets provided by Dr Lees from UCL. The datasets contain
features computed from protein sequence and proportions from protein databases. An-
other approach to PFP is to use a protein’s sequence. Work can be tackled by converting
protein sequences into vectors using Prot2Vec (Asgari and Mofrad, 2015) and linked to
GO term. The labelled dataset can be used to train an LSTM network and subsequently,
the trained LSTM can be used to perform PFP.

The concept of splitting a protein’s sequence to k-mers has been applied on protein
to tackle secondary structure prediction (Madera et al., 2010). Within DL, the protein
sequences can also be represented as k-mers associated with GO terms. The k-mers can
be used to train LSTM to perform PFP. This approach would require exploring different
k-mer sizes to identify the best performing k-mer size.

3https://www.docker.com/ (Accessed 2018-12-30)
4https://aws.amazon.com/ecs/ (Accessed 2018-12-30)
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Chapter 6. Conclusions 6.4. FinalWords

6.4 | FinalWords
This dissertation investigated the application of machine learning techniques to achieve
reliable PFP. The main contribution of this work is that it identified species specific
feature sets and the ML technique to enable reliable PFP. The feature sets comprise of
proportions from structural protein databases and protein measurement extracted from
the protein sequence using different tools. The identified feature sets and methods were
limitedly evaluated against CAFA2 share task methods and performance exceeded the
top performing method.
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A
Media Contents

The experiment setup used in this dissertation comprised different artefacts, source
code, ML datasets, configuration files and additional data. Figure A.1, details the di-
rectory structure used for the different artefacts in the attached media.

/

dataset (datasets used in this work)

generated datasets (datasets used in experiments)

provided dataset (provided dataset files)

experimentevaldata (dump of experiment data)

mariadbdata (dump of downloaded/processed data)

otherdata (provided information content data and GO DAG OBO files)

src (sources directory)

bioml (ML wrapper code)

dsgeneratorcafa2 (dataset generator code)

dsgeneratorcafa3 (dataset generator code)

evalmetrics (CAFA evaluation code)

experimentconfigs (experiment configuration files)

ga (GA code)

misc (various utility code and figuregenerator)

nn (NN wrapper code)

pipeline (integration code)

Figure A.1: Media contents directory structure.

The Python source of the different modules used in this dissertation are provided
under src directory. Each Python module is located in a different directory.
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Appendix A. Media Contents

This work relies on a number of data artefacts to generate the ML datasets. The
dataset contains the datasets provided by Dr Lees and the generated ML datasets.

The otherdata directory contains the three files. Two versions of the GO DAG in OBO
file format and the information content data in Python pickle format.

The data used in this dissertation is stored in MariaDB tables to facilitate storage and
retrieval. The compressed MariaDB dump located under mariadbdata generated using
mysqldump contains the following tables:

� cafa2quickgoannotations124 - populated QuickGo data using GOA 124 data.

� cafa3quickgoannotations2016 - populated QuickGo data using GOA 2016 data.

� cafa3quickgoannotations161 - populated QuickGo data using GOA 161 data.

� cafa3completemlds - Dr Lees CAFA3 dataset populated from HDF files.

� taxonid - Taxon ID to string mapping populated from NCBI TaxID.

� cafa3targetsfasta - CAFA3 target information loaded from CAFA3 FASTA files.

� cafa3mappings - gene name to UniProt ID mapping data populated using Uniprot
mapping service.

The experiment performance data is stored MariaDB tables. Under directory experi-
mentevaldata four dump files were generating using mysqldump each one containing the
following tables:

� evaluationruns - run information and the computed metrics.

� evaluationdatafmax - run information and precision recall data to plot curve.

� evaluationdatarumi - run information and remaining uncertainty misinformation
data to plot curve.

� garuns - details of the GA execution.

� gaperformance - chromosome scoring linked to specific GA execution.

� gageneration - tracks the epochs of the GA runs.

� gacvdesc - tracks cross validation GA runs.
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The directory experimentevaldata also contains two SQLite databases. The files contain
the prediction results generated by the RF and SVM models for the CAFA3 targets. The
database file nnperf_cafa3.sqlite contains the prediction results for the NN models store
in tables prefixed with nn. The tables in the databases are:

� runs - run information and the computed metrics.

� runoutput - the predicted GO terms and prediction confidence for the CAFA3 tar-
gets.
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B
Dataset Overview

The dataset provided training dataset includes a number of features. All the features
describe GO terms originating from the “molecular function” ontology of the GO DAG.
Table B.1 describes the dataset in terms of its contents, the minimum, maximum and
number of unique values for each feature.
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Appendix B. Dataset Overview

Column name Minimum value Maximum value Unique values

GO GO:0000006 GO:2001227 6,388

all_go_prop_cath_funfam 0.0 1.0 4,077

all_go_prop_dc 0.0 1.0 6,028

all_go_prop_pfam 0.0 1.0 11,899

all_go_prop_pfam_funfam 0.0 1.0 4,626

ancestor_Bilateria 0 1 2

ancestor_Eukaryote 0 1 2

ancestor_gn 0 1 2

cider_FCR 0.0 0.68 17,520

cider_hydropathy 0.0 6.389655172413794 30,992

cider_kappa 0.0 0.6465477004447107 30,341

disorder 0.0 1.0 5,441

go_freq_score 0.0 165.89 398

go_level 0.1 1.1 11

go_with_domain 0 1 2

go_with_mmseq 0 1 2

mmseq_bit_score 0.0 126.26 3,294

mmseq_ident 0.0 1.0 887

mmseq_prox 0.0 10.0 2,153

number_pfam_domains 0.0 2.70805020110221 13

pfam_to_go 0 1 2

seq_acc A0A087X1C5 X2JGQ0 31,097

signalp 0 1 2

strict_go_prop_cath_funfam 0.0 1.0 1,020

strict_go_prop_dc 0.0 1.0 1,393

strict_go_prop_pfam 0.0 1.0 2,990

strict_go_prop_pfam_funfam 0.0 1.0 997

tmhmm 0 34 26

yval -1.0 1.0 2

Table B.1: Training dataset description.
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C
Dissertation Journey

This dissertation was completed in part time commitment over eighteen months.
Jun 2017 - Dataset exploration of the dataset using RapidMiner.
Jul 2017 - Started code for GO term visualiser based on D3 Javascript library. Loaded

GO DAG in Neo4J graph database to familiarise with structure using Cypher queries.
Aug 2017 - Rewrote ML code using Scikit-learn. Researched visualisation library

and evaluated Cytoscape. Cytoscape provide various layout plug-ins such as Dagre.
Re-implemented GO term visualiser based on Node JS and Cytoscape. Continued work
to understand the dataset provided by Dr Lees at UCL. Switched performance metric
from accuracy to Fmax. Generated visualisations for results obtained using Matplotlib.

Sep 2017 - Continued dataset analysis in coordination with Dr Lees at UCL. Added
prediction confidence to ML results. Ongoing work to improve specificity of the work
and improve feature selection. Initial work on implementing the information theoretic
metrics. Started work to generate visual map of the GO ontology.

Oct 2017 - Updated GO term visualiser to be based on Bootstrap, retrieve data
through REST endpoints and to support mouseover events. Improved dataset gener-
ation to ensure that the proteins are not split between training and testing datasets.
Started work to develop pipeline that orchestrates the different modules to perform ex-
periments, prototyped idea with evaluation code integration. Started work on progress
report.

Nov 2017 - Finalise Progress report. Started developed on feature selection code
based on literature read. Investigated issues related to high annotation count of proteins
dataset.

Dec 2017 - Ongoing dataset analysis related to high annotation count for proteins.
Worked with multiple databases to verify protein annotations. Continued work on in-
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Appendix C. Dissertation Journey

formation theoretic implementation based on journal paper. Worked on CAFA2 Matlab
implementation to prepare groundwork to test evaluation code implementation.

Jan 2018 - Continued work on the information theoretic implementation to ensure
correct results. Worked on GA to ensure proper integration with evaluation code. Code
was implemented as python modules and fitness function was externalised to other
module to keep GA independent from chromosome evaluation. Re-wrote critical parts
of the code to improve performance. Fixed MariaDB connection timeout issues.

Feb 2018 - Tackled pipeline performance issues through parallelisation, data struc-
ture optimisation, re-implementation of critical code and used Cython to speed up code
execution. Analysis of the data resulted that in most cases GO term is already enriched
causing classifier to predict shallow terms in GO DAG. Developed code to identify leaf
node and remove intermediate annotations. Wrote updated abstract for external exam-
iner. Due to family circumstances work on the dissertation was paused.

Mar 2018 - Investigated different ML techniques including Deep Learning. Dis-
cussed various options to enrich the dataset, including function families data. Work
was carried out to get sequence data and extract FunFam features using appropriate
tools. Data enrichment options were considered including PFAM, CATH FunFam and
PPI data.

Apr 2018 - Executed GA and extracted “best chromosome”. Test were performed
using different ML techniques, such as SVM, RF and Logistic Regression. Performed
cross species testing as a control experiment. Work on figure generation was started
to automate figure generation and ensure consistency. Organised Skype call with Prof.
Orengo UCL to tackle dataset issues. Dr Lees UCL proposed to use CAFA3 dataset as
more data is available. True annotations of the sequence could be downloaded from
QuickGO. CAFA3 was made available and code updated to reflect data changes. Initial
work focused on Homo sapiens and E. coli.

May 2018 - Mapped CAFA3 target to UniProt ID. Initial attempts did not work as
web service does not proved ranked search results. QuickGO data of all sequences were
downloaded from QuickGO WS. Taxonomy data was downloaded from NCBI and leaf
nodes annotation were marked to facilitate ML dataset generation. Initial investigation
of NN based on Scikit-learn was carried out. Worked to test out SVM, one vs one, one
vs rest and SVM ensemble. SVM ensemble performed poorly. Code was amended to
test SVM kernel estimators, however this was not used due to time constraints.

Jun 2018 - Continued work on NN, implementation options investigated were MLP-
Classifer and Pytorch. Python code was developed to implement the NN experimental
code using Pytorch with ADAM optimiser and mini batches. Started work on to inves-
tigate NN stopping criteria.
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Appendix C. Dissertation Journey

Jul 2018 - Implemented NN training stopping criteria based on error reduction.
Started work on the dissertation report and executed experiments.

Aug 2018 - Ongoing work on the dissertation report.
Sep 2018 - Work continued on ML tuning and cross validation exploration. A num-

ber of experiments were executed. Ongoing work on the dissertation report.
Oct 2018 - During some experiments a data anomaly was identified. Further inves-

tigation revealed that during dataset creation annotations were retrieved from a more
recent version of QuickGO. In some cases the GO terms used in QuickGO were not
found in the GO DAG. Issue was solved by swapping QuickGO WS with GOA DS. The
dataset generation was modified to read older QuickGO version. This change required
re-execution to all the experiments. Implemented GA cross validation and started ex-
periment execution.

Nov 2018 - Re-executed all the experiments. The GA cross validation code required
some minor fixes in the database connection logic to fix race conditions. Ongoing work
on the dissertation report and figure fixes to improve clarity.

Dec 2018 - Whilst discussing the results it was noted that the training dataset used
was not the right one. For this purpose, the proper training dataset was generated and
all the experiments re-executed. Ongoing work on the dissertation report and figure
fixes to improve clarity.
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D
Additional Experiment Results

The GA was executed on two species specific datasets, namely Homo sapiens and E. coli
using different ML techniques to evaluate GA chromosomes. This appendix reports the
GA chromosomes for:

� RF with Entropy as the node splitting criterion, denoted as RF-Entropy.

� SVM with the misclassification penalty value set to 1.0, denoted as SVM-C1.0.

� SVM with the misclassification penalty value set to 0.1, denoted as SVM-C0.1.

The top 6 GA chromosomes for RF-Entropy are reported for E. coli in Table D.1 and
for Homo sapiens in Table D.2. Analysis of the top 6 GA chromosomes, illustrates that
using RF-Entropy as ML technique, the GA selects more the ratios of protein databases
than protein measurements. The two protein measurements that were selected are:
tmhmm (number of predicted transmembrane helices) and protein disorder information
(prefixed cider.

The GA chromosomes selected using SVM-C0.1 vary significantly between taxa. For
the E. coli as per Table D.3, the database ratios with strict evidence codes and protein
disorder information were selected. In case of Homo sapiens as illustrated in Table D.4,
chromosomes include more ratios considering all evidence codes and protein structural
information such as protein disorder information, tmhmm and signalp (presence of signal
peptide cleavage sites).

The feature set selected by the GA using SVM-C1.0 vary between taxa. In case of
E. coli as illustrated in Table D.5, the strict database ratios, protein disorder information
and tmhmm were selected. For Homo sapiens taxon as illustrated in Table D.6, the GA
selected, protein measurements derived from sequences such as disorder information,
sequence match information (prefixed mmseq) and tmhmm.
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Table D.1: Top 6 GA chromosomes for E. coli taxon using RF-Entropy as the ML tech-
nique.
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Table D.2: Top 6 GA chromosomes for Homo sapiens taxon using RF-Entropy as the ML
technique.
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Table D.3: Top 6 GA chromosomes for E. coli taxon using SVM-C0.1 as the ML technique.
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Table D.4: Top 6 GA chromosomes for Homo sapiens taxon using SVM-C0.1 as the ML
technique.
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Table D.5: Top 6 GA chromosomes for E. coli taxon using SVM-C1.0 as the ML technique.
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Table D.6: Top 6 GA chromosomes for Homo sapiens taxon using SVM-C1.0 as the ML
technique.
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E
CAFA3 Results Enquiry

This appendix reports email communication with Prof Iddo Friedberg regarding the
CAFA3 results. From the email communication the CAFA3 evaluation paper is works
in progress and it will take at least a couple of months for a preprint version of the paper
to be available.
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1/19/2019 University of Malta Mail - Re: New Message From Bio Function Prediction - Contact: Iddo Friedberg

https://mail.google.com/mail/u/0?ik=1e73c8e951&view=pt&search=all&permmsgid=msg-f%3A1620212902832728217&simpl=msg-f%3A1620212902832728217 1/1

Kenneth Penza <kenneth.penza.16@um.edu.mt>

Re: New Message From Bio Function Prediction - Contact: Iddo Friedberg  

Friedberg, Iddo [V MPM] <idoerg@iastate.edu> 18 December 2018 at 18:50
To: Kenneth Penza <kenneth.penza.16@um.edu.mt>

Hi Kenneth,
 
We do not have a CAFA3 paper yet. It will take a couple of months before we even have a preprint.  Would evaluating yourself against CAFA2 methods work?
 
Iddo
 
On Tue, Dec 18, 2018 at 1:04 AM Kenneth Penza <mail@biofunctionprediction.org> wrote: 

Good morning, First of all, hope this email finds you well. I am Kenneth Penza a M. Sc. Artificial Intelligence student at the University of Malta. In my dissertation I am
applying different machine learning techniques on bioinformatics data. My work, will be evaluated against CAFA submissions as it this provides the robustness of
evaluating against a solid benchmark. From the site (https://biofunctionprediction.org/), I cannot find the CAFA3 results paper. Is there a version of the paper I can use to
perform the paper evaluation? Thank you for your time and consideration Kenneth 
 

 
 
--  
Iddo Friedberg, PhD 
Associate Professor, Computational Biology 
Associate Chair, Graduate Program in Bioinformatics and Computational Biology
Dpt. of Veterinary Microbiology and Preventive Medicine 
2118 Vet Med 
1800 Christensen Dr. 
Iowa State University  
Ames, IA 50011-1134 
USA 
+1 (515) 294 5959 
http://iddo-friedberg.net/contact.html 
++++++++++[>+++>++++++>++++++++>++++++++++>+++++++++++<<<<<-]>>>>++++.> 
++++++..----.<<<<++++++++++++++++++++++++++++.-----------..>>>+.-----. 
.>-.<<<<--.>>>++.>+++.<+++.----.-.<++++++++++++++++++.>+.>.<++.<<<+.>> 
>>----.<--.>++++++.<<<<------------------------------------.

Appendix E. CAFA3 Results Enquiry

127



References
Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. Basic local align-

ment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

Ehsaneddin Asgari and Mohammad R. K. Mofrad. Continuous Distributed Representation of Biological
Sequences for Deep Proteomics and Genomics. PLOS ONE, 10(11):1–15, 11 2015.

Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler, J. Michael Cherry,
Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, et al. Gene Ontology: tool for the
unification of biology. Nature genetics, 25(1):25, 2000.

Lisa Bartoli, Ludovica Montanucci, Raffaele Fronza, Pier Luigi Martelli, Piero Fariselli, Luciana Carota,
Giacinto Donvito, Giorgio P. Maggi, and Rita Casadio. The Bologna Annotation Resource: a Non Hier-
archical Method for the Functional and Structural Annotation of Protein Sequences Relying on a Com-
parative Large-Scale Genome Analysis. Journal of Proteome Research, 8(9):4362–4371, 2009.

Alex Bateman, Ewan Birney, Richard Durbin, Sean R. Eddy, Robert D. Finn, and Erik L. L. Sonnhammer.
Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic acids
research, 27(1):260–262, 1999.

Alex Bateman, Ewan Birney, Richard Durbin, Sean R. Eddy, Kevin L. Howe, and Erik L. L. Sonnhammer.
The Pfam protein families database. Nucleic Acids Research, 28(1):263–266, 2000.

Andreas D. Baxevanis and B. F. Francis Ouellette. Bioinformatics: A Practical Guide to the Analysis of Genes
and Proteins, volume 43. John Wiley & Sons, second edition, 2004. ISBN 0471383910.

Seth I. Berger and Ravi Iyengar. Network analyses in systems pharmacology. Bioinformatics, 25(19):2466–
2472, 2009.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, 2009. ISBN
9780387310732.

Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-Betanzos. Feature Selection for High-
Dimensional Data. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer International
Publishing, 2015. ISBN 978-3-319-21858-8.

128



Appendix E. CAFA3 Results Enquiry References

Boyan Bonev. Feature selection based on information theory. PhD thesis, University of Alicante, 2010.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and regression
trees. Chapman and Hall, 1984. ISBN 9780412048418.

Ian Bruno, Saulius Gražulis, John R. Helliwell, Soorya N. Kabekkodu, Brian McMahon, and John West-
brook. Crystallography and Databases. Data Science Journal, 16(38):1–17, 2017.

Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos, Kevin Bealer,
and Thomas L. Madden. BLAST+: architecture and applications. BMC bioinformatics, 10(1):421, 2009.

Mengfei Cao, Hao Zhang, Jisoo Park, Noah M. Daniels, Mark E. Crovella, Lenore J. Cowen, and Benjamin
Hescott. Going the Distance for Protein Function Prediction: A New Distance Metric for Protein Inter-
action Networks. PLOS ONE, 8:1–12, 10 2013.

Renzhi Cao and Jianlin Cheng. Integrated protein function prediction by mining function associations,
sequences, and protein–protein and gene–gene interaction networks. Methods, 93:84–91, 2016.

Renzhi Cao, Colton Freitas, Leong Chan, Miao Sun, Haiqing Jiang, and Zhangxin Chen. ProLanGO: protein
function prediction using neural machine translation based on a recurrent neural network. Molecules, 22
(10):1732, 2017.

Marcus C. Chibucos, Christopher J. Mungall, Rama Balakrishnan, Karen R. Christie, Rachael P. Huntley,
Owen White, Judith A. Blake, Suzanna E. Lewis, and Michelle Giglio. Standardized description of
scientific evidence using the Evidence Ontology (ECO). Database, 2014:bau075, 2014.

Davide Chicco, Peter Sadowski, and Pierre Baldi. Deep Autoencoder Neural Networks for Gene Ontology
Annotation Predictions. In Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology,
and Health Informatics, pages 533–540. ACM, 2014.

Wyatt T. Clark and Predrag Radivojac. Analysis of protein function and its prediction from amino acid
sequence. Proteins: Structure, Function, and Bioinformatics, 79(7):2086–2096, 2011.

Wyatt T. Clark and Predrag Radivojac. Information-theoretic evaluation of predicted ontological annota-
tions. Bioinformatics, 29(13):i53–i61, 2013.

Francesc Comellas and Javier Ozón. Graph Coloring Algorithms for Assignment Problems in Radio Net-
works. In Proceedings of the International Workshop on Applications of Neural Networks to Telecommunica-
tions2, pages 46–56. Psychology Press, 1995. ISBN 0-8058-2084-1.

Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids
Research, 32(suppl_1):D258–D261, 2004.

Gene Ontology Consortium et al. Creating the gene ontology resource: design and implementation. Genome
research, 11(8):1425–1433, 2001.

129



Appendix E. CAFA3 Results Enquiry References

Gene Ontology Consortium et al. The Gene Ontology in 2010: extensions and refinements. Nucleic acids
research, 38(suppl_1):D331–D335, 2010.

Domenico Cozzetto, Federico Minneci, Hannah Currant, and David T. Jones. FFPred 3: feature-based
function prediction for all Gene Ontology domains. Scientific Reports, 6:31865, 2016.

Sayoni Das, Natalie L. Dawson, and Christine A. Orengo. Diversity in protein domain superfamilies.
Current opinion in genetics & development, 35:40–49, 2015a.

Sayoni Das, David Lee, Ian Sillitoe, Natalie L. Dawson, Jonathan G. Lees, and Christine A. Orengo. Func-
tional classification of CATH superfamilies: a domain-based approach for protein function annotation.
Bioinformatics, 31(21):3460–3467, 2015b.

Minghua Deng, Kui Zhang, Shipra Mehta, Ting Chen, and Fengzhu Sun. Prediction of protein function
using protein–protein interaction data. Journal of computational biology, 10(6):947–960, 2003.

Joel T. Dudley, Tarangini Deshpande, and Atul J. Butte. Exploiting drug–disease relationships for compu-
tational drug repositioning. Briefings in Bioinformatics, 12(4):303–311, 2011.

Robert D. Finn, Jaina Mistry, Benjamin Schuster-Böckler, Sam Griffiths-Jones, Volker Hollich, Timo Lass-
mann, Simon Moxon, Mhairi Marshall, Ajay Khanna, Richard Durbin, Sean R. Eddy, Erik L. L. Sonnham-
mer, and Alex Bateman. Pfam: clans, web tools and services. Nucleic acids research, 34(suppl_1):D247–
D251, 2006.

Valerio Freschi. Protein function prediction from interaction networks using a random walk ranking algo-
rithm. In 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering, pages 42–48. IEEE,
Oct 2007.

Iddo Friedberg and Predrag Radivojac. Community-wide evaluation of computational function prediction.
In The Gene Ontology Handbook, pages 133–146. Springer, 2017. ISBN 978-1-4939-3743-1.

Iddo Friedberg, Yuxiang Jiang, and Predrag Radivojac. Supplementary Data for CAFA2, Jan 2016. URL
https://figshare.com/articles/Supplementary_Data_for_CAFA2/2059944/1.
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