
Applying Machine Learning to
Ultrafast Shape Recognition in
Ligand-Based Virtual Screening

Etienne Bonanno

Supervised by Dr Jean Paul Ebejer

Department of Artificial Intelligence

Faculty of ICT

University of Malta

September, 2019

A dissertation submitted in partial fulfilment of the requirements
for the degree of M.Sc. Artificial Intelligence.





 

08.02.2018 

FACULTY/INSTITUTE/CENTRE/SCHOOL______________________ 
 
DECLARATIONS BY POSTGRADUATE STUDENTS 
 
Student’s I.D. /Code _____________________________ 
 
Student’s Name & Surname _________________________________________________ 
 
Course _________________________________________________________________ 
 
Title of Dissertation 
________________________________________________________________________ 
 
________________________________________________________________________ 
 
________________________________________________________________________ 
 
(a) Authenticity of Dissertation 
 
I hereby declare that I am the legitimate author of this Dissertation and that it is my original work. 
 
No portion of this work has been submitted in support of an application for another degree or 
qualification of this or any other university or institution of higher education.  
 
I hold the University of Malta harmless against any third party claims with regard to copyright 
violation, breach of confidentiality, defamation and any other third party right infringement. 

(b) Research Code of Practice and Ethics Review Procedures 

I declare that I have abided by the University’s Research Ethics Review Procedures. 

As a Master’s student, as per Regulation 58 of the General Regulations for University Postgraduate 
Awards, I accept that should my dissertation be awarded a Grade A, it will be made publicly 
available on the University of Malta Institutional Repository. 
 
 
______________________     ______________________ 
Signature of Student      Name of Student (in Caps) 
 
 
_____________________ 
Date 

476476M

Applying Machine Learning to Ultrafast

I.C.T

08/09/2019

M.Sc. (A.I.)

Shape Recognition in Ligand Based Virtual Screening

ETIENNE BONANNO

Etienne Bonanno





v

Statement of Originality

I, the undersigned, declare that this is my own work unless where otherwise
acknowledged and referenced.

Candidate Etienne Bonanno

Signed

Date April 24, 2020





To Patricia

For putting up with my endless nights of study during our first years of marriage.





ix

Acknowledgements

I wish to thank, first and foremost, my supervisor, Dr. Jean-Paul Ebejer, for his
inimitable talent for imparting knowledge to his students, for sparking ideas for
new avenues of research, for tirelessly supporting my endeavours throughout the
time I spent studying and working on this dissertation and for the encouragement
he gave me during the dark times when the cosmic joker seemed intent on working
his mischief.

Deep gratitude and love also go to my wife Patricia, for putting up with endless
study-nights, spells of dejectedness and moments of panic all during our first two
years of marriage. I could not have done this without her support through the
difficult times.

Endless love and gratitude go to my parents without whose personal sacrifices
I would not have been the man I am today. To them I owe everything.

I would also like to thank all the excellent lecturers who taught me over these
past two years, under whose tutelage I spent many enjoyable hours of learning,
and the Department of Artificial Intelligence at the University of Malta that brought
together such an amazing team and made available such a high quality course of
studies.

My gratitude also goes to the Research Support Services Directorate at the Uni-
versity of Malta as well as Amazon Web Services through their AWS Educate initia-
tive, for deeming my work worthy and funding my use of cloud services through-
out the course of my work.





xi

Abstract

Ultrafast Shape Recognition (USR), along with its derivatives, are Ligand-Based
Virtual Screening (LBVS) methods that condense 3-dimensional information about
molecular shape, as well as other properties, into a small set of numeric descriptors.
These can be used to efficiently compute a measure of similarity between pairs of
molecules using a simple inverse Manhattan Distance metric.

In this study we explore the use of suitable Machine Learning techniques that
can be trained using USR descriptors, so as to improve the similarity detection of po-
tential new leads. We use molecules from the Directory for Useful Decoys-Enhanced
to construct machine learning models based on three different algorithms: Gaussian
Mixture Models (GMMs), Isolation Forests and Artificial Neural Networks (ANNs).
We train models based on full molecule conformer models, as well as the Lowest
Energy Conformations (LECs) only. We also investigate the performance of our
models when trained on smaller datasets so as to model virtual screening scenarios
when only a small number of actives are known a priori.

Our results indicate significant performance gains over a state of the art USR-
derived method, ElectroShape-5D (ES5D), with GMMs obtaining a mean perfor-
mance up to 430% better than that of ES5D in terms of Enrichment Factor with
a maximum improvement of up to 940%. Additionally, we demonstrate that our
models are capable of maintaining their performance, in terms of enrichment factor,
within 10% of the mean as the size of the training dataset is successively reduced.
Furthermore, we also demonstrate that running times for retrospective screening
using the machine learning models we selected are faster than standard USR, on
average by a factor of 10, including the time required for training. Our results show
that machine learning techniques can significantly improve the virtual screening
performance and efficiency of the USR family of methods.
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1

Introduction

Cheminformatics is a multidisciplinary field of study that applies techniques in statistics
and computer science to the study of biochemistry, the term being defined in Brown et.
al. (1998). One of the most active research areas of cheminformatics is that of discover-
ing new drugs by computational means, a study referred to as Computer Aided Drug
Discovery (CADD)

The discovery of a new drug is a long, time-consuming process that can take 14
years to complete successfully, incurring a cost of 800 million US dollars (Lavecchia
and Giovanni, 2013). Virtual Screening (VS) is a systematic search approach that lever-
ages electronic databases of chemical compounds and modern computing resources to
streamline this process. The aim of this process is to computationally pre-screen com-
pounds for those that are most likely to exhibit affinity for binding to a given target
protein. In this way laboratory screening time can be drastically reduced, devoting lab-
oratory resources to preferentially testing only the compounds that are more likely to
be successful leads (Leach and Gillet, 2007). Advances in processing power and high-
capacity storage as well as the development of Big-Data techniques has made this pro-
cess of molecular screening feasible today, resulting in significant savings of time and
cost and significantly streamlining the drug discovery cycle.

Virtual Screening can be divided into two main domains. Structure-Based Virtual
Screening (SBVS) attempts to use the known shape of a drug-like small molecule to pre-
dict whether it will bind to a known binding pocket on the surface of a target protein. This
process is known as ligand-protein docking. The 3D shape-alignment procedures that are
required during docking are processing intensive and due to this SBVS approaches tend
to be time and resource-consuming.

The second major branch of Virtual Screening is called LBVS. In LBVS, no reference is
made to the properties or shape of the target protein. Instead LBVS is used when knowl-
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Chapter 1. Introduction 1.1. Motivation

edge of one or more compounds that bind to the target protein is already in hand. Using
knowledge about the chemical, physical and spatial characteristics of these known bio-
chemically active compounds, called ligands or actives, LBVS attempts to discover new
compounds that fulfil some similarity criterion with respect to the known actives and
thus have a high probability of binding to the protein and exhibiting similar drug-like
behaviour.

In general, the LBVS problem is one of ranking a set of unknown compounds by
the molecules’ binding affinity to the target protein as determined by a similarity value
calculated for each compound to the known active ligands according to some similarity
function defined on some property or properties of the molecules.

Shape-based similarity searching or Molecular Shape Comparison (MSC) is a class of
LBVS algorithms that attempts to use the physical shape of the atomic arrangement
within the molecules as the property upon which the similarity between molecules is
judged. Analogously to molecular docking, the shape comparison process between two
molecules needs to find the optimal superposition of the two molecules in order to cor-
rectly compare their shapes and this is a computationally expensive procedure.

USR is a MSC technique, aiming to get around the heavy computational require-
ments entailed by molecule alignment. The technique was developed in 2007 (Ballester
and Richards, 2007a,b) and it involves distilling the 3-D shape of a molecule into a de-
scriptor vector made up of 12 decimals which is invariant under rotation. These de-
scriptors are then compared directly using a modified Manhattan distance metric, obvi-
ating the need for calculating molecule superposition. This method was developed in
2007, and since then, extensions to this algorithm have been proposed that augment the
purely shape-based descriptors of USR with other chemical properties of the molecule
such as Electroshape 4-D that use atomic partial charges (Armstrong et al., 2010) and US-
RCAT, using atom types (Schreyer and Blundell, 2012), obtaining better virtual screen-
ing scores than the original USR algorithm. Electroshape 5-D is the USR variant that has
obtained the best virtual screening scores to date in the literature. For this reason, we
will standardise on this variant during the course of this dissertation.

1.1 | Motivation
Molecules are, in general, not rigid structures. Molecular bonds between the atoms
making up a molecule can rotate, therefore any given molecule might be able to take an
exceedingly large number of different shapes in 3-D space with only a small number the
shape of which will match a protein binding site. An example of a rotatable atomic bond

2



Chapter 1. Introduction 1.1. Motivation

Figure 1.1: A rotatable bond determining molecular conformation

and the effect it can have on a molecule’s shape can be seen in Figure 1.1. These different
configurations of a molecule are referred to as conformations, conformational isomers or
simply conformers.

Any method that makes use of molecular shape as a similarity criterion, including
SBVS methods as well as USR, must take molecular conformation into account because
only a small number of conformations out of thousands might happen to be shaped in
such a way as to bind to a protein binding pocket.

Even though USR is considered to be an extremely fast method of molecular shape
comparison, the necessity of taking thousands of molecular conformations into account
means that Virtual Screening experiments against large compound databases can never-
theless take a significant amount of time and processing power to complete. In our work
on this project we found that it took several hours to complete a retrospective USR run
for a single protein based on our compound dataset when running on a 3-node cluster
with a total of 24 cores.

Several LBVS techniques have already been augmented and improved by applying

3
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machine learning concepts in previous research (Lavecchia and Giovanni, 2013), how-
ever machine learning has, to our knowledge, not yet been applied to USR and its re-
lated family of methods. Throughout the course of this research we will explore the
effectiveness of different classes of machine learning algorithms when applied to USR
descriptors in improving the virtual screening ligand ranking scores. Using a trained
machine learning model for virtual screening runs would not only potentially result in
better ranking performance with respect to standard USR, but would also potentially be
orders of magnitude faster as the entire active dataset would, in general, not need to be
processed for every compound under test.

A major objective of this research is also to determine if, by making use of machine
learning, the size of the training data can be decreased with respect to that required by
non-ML USR (henceforth known as Standard USR) while maintaining an adequate lig-
and ranking performance. In this way the storage requirements for training data would
be significantly decreased, as would the training time for the machine learning model.
Additionally, Ballester et al. (2009a) point out that it is possible to only use the LECs of
the template actives as search queries while still preserving an acceptable performance
of the algorithm and cutting down drastically on the amount of computation needed.
We will explore this idea further in order to determine if this still holds when using ma-
chine learning algorithms, comparing the performance obtained by models trained on
all the active conformers against that obtained by similar models trained only on LECs.

1.2 | Datasets for Virtual Screening
Datasets used to test virtual screening algorithms consist of a set of known active ligands
for a given protein target, together with a set of decoys, i.e. compounds presumed not to
bind to the target. Decoys are usually chosen to be sufficiently similar to the actives for
a given target to make ligand detection a challenge for the virtual screening algorithm
so as to ensure that the results are significant.

One of the most popular virtual screening datasets that has been used in the virtual
screening literature in general, and in relation to USR in particular, is the Directory for
Useful Decoys (DUD) (Huang et al., 2006). This free to use dataset has been compiled
at the Shoichet Laboratory in the Department of Pharmaceutical Chemistry at the Uni-
versity of California, San Francisco and published online in 2006. This dataset provides
actives and decoys for 40 target proteins with an average active-decoy ratio of 1:36 for
each protein. The decoys in the dataset are selected specifically to have similar physi-
cal properties as the corresponding actives but different topology (i.e. arrangement of
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atoms in 3D space). As such, the decoys are presumed not to bind to the target protein,
however they have, in general, not been tested to this effect as physically testing ev-
ery single decoy would be prohibitively expensive, therefore it is possible that a small
portion of decoys would bind to the protein in reality.

By 2012, however, problems had been discovered in the DUD. Actives in the dataset
were not diverse enough to ensure unbiased results from virtual screening algorithms.
Decoy selection was also not optimal as significant imbalance existed between the net
charges of actives and decoys with 42% of the actives having a net charge versus only
15% of the decoys.

These shortcomings of the DUD were addressed by the release in 2012 of a new
and expanded version of the DUD, called the Directory of Useful Decoys-Enhanced
(DUD-E) (Mysinger et al., 2012). DUD-E provides datasets for 102 target proteins with
an active-decoy ratio of 1:50. To our knowledge, USR techniques have, to date, not
been applied to the DUD-E. Evaluating, therefore, USR-like methods on the Directory
of Useful Decoys-Enhanced (DUD-E) is, in itself, a valid contribution to the field of
study.

1.3 | Machine Learning Aspects
The nature of similarity-based LBVS such as USR presents several challenges when it
comes to the selection of suitable machine learning models. The datasets provided in
the DUD-E consist of confirmed active molecules along with decoy molecules that are
assumed, but not confirmed, inactive. The uncertainty in the negative training examples
can be an issue for training supervised models. Additionally, DUD-E provides only
decoys which are considered "challenging", i.e. which are close in size, weight and other
atomic properties to the actives, while having a different topology, however, in reality
the set of "inactive" molecules for any protein target is much larger in size and diversity,
therefore training any supervised model on the provided decoys would not necessarily
produce a robust performance when presented with unseen data that resides outside
the parameters of the DUD-E decoy selection.

Despite these challenges, the problem can be tackled in several ways. Generative
models are possible algorithms to use. Given a set of observations X and corresponding
model parameters Y, generative models attempt to learn the joint distribution P(X, Y)
from which the classification for new data points can be inferred by deriving P(Y|X).
Generative models are normally trained separately on each label class (active and decoy
in this case), learning a probabilistic distribution of points for each class. New test points
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are then processed with the learned model for each class and are classified according to
the class obtaining the highest probability - a process referred to as Maximum a Posteriori
estimation (Ng and Jordan, 2002).

When conformers are generated from an active in the DUD-E, in general only several
conformers will exhibit the required shape or shapes that can bind to the target protein.
When all the active molecules are expanded into conformers and all of these are taken
as a whole, clusters of conformers corresponding to the specific molecule shapes that
can bind to the protein will be observed, as verified by Ballester et al. (2009a). In effect,
every active molecule will supply, along with a large number of "random" non-binding
conformers, some conformers that correspond to a small number of molecular shapes
that can bind to the target protein. The superposition of all the active molecules will
result in the "active" shapes being reinforced, resulting in detectable clusters. This can
be leveraged by using outlier-detection models that can be trained on "noisy" data such
as this and learn which training examples are "inliers" and which are "outliers".

The above two methods are both non-supervised methods that can be trained only
on the actives in the dataset. Despite the reservations we outlined above, we wanted to
also include a supervised method in our study, so as to be able to compare the relative
performances of the different approaches. For this reason, we decided to use ANNs as
our supervised method of choice. ANNs have seen extensive use in a wide variety of
problems, including virtual screening, obtaining excellent results (Lavecchia, 2015).

Through the course of this project we explore representative algorithms belonging to
each class of model outlined above and compare the performance obtained from each to
the baseline USR performance as well as to each other. We will also train models using
varying-size subsets of the DUD-E datasets so as to explore the effect of diminishing
training set size on the similarity matching performance of our algorithms.

1.4 | Aims and Objectives
The aim of this study is to explore the possibilities offered by various machine learning
techniques to augment the USR family of virtual screening methods in order to boost
active ligand ranking as well as decrease the processing time for virtual screening es-
says.

The dissertation will deal with two main scientific research questions, namely:

1. Can machine-learning techniques be used instead of naïve Manhattan distance to
improve Virtual Screening performance based on USR and USR-derived descrip-
tors?
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2. What is the minimal amount of data required to adequately train the machine
learning model?

The application of machine learning algorithms to the problem of USR similarity
matching constitutes a new approach to the problem of shape-based similarity searching
in virtual screening and is therefore an avenue of research that could result in significant
improvements to the field.

The second research question is important because it is always the case that the num-
ber of known active ligands for a particular target protein in a virtual screening assay is
limited, therefore it is crucial to determine how the effectiveness of a machine learning
model applied to a virtual screening dataset varies with severely unbalanced training
data and with limited training examples.

1.4.1 | Objectives
The objectives to be reached in order to achieve the aims of this research are the follow-
ing:

1. To create an implementation of USR/Electroshape 5-D to serve as the baseline
against which to evaluate machine learning models (henceforth, standard USR).

2. To leverage the online chemical database known as the Directory of Useful Decoys
– Enhanced (DUD-E) (Mysinger et al., 2012) which has been created especially for
the purpose of evaluating VS methods.

3. To generate representative conformers for the molecules in the DUD-E database
for use in the baseline USR virtual screening performance as well as for training
of machine learning models.

4. To explore machine learning algorithms that can be trained only on positive ex-
amples, or which can deal with uncertainty in the negative examples.

5. To train various ML models, mapping out their performance against the baseline
of standard USR with various protein targets in order to identify an optimum
machine learning model

6. To run further experiments decreasing the number of known actives so as to un-
derstand how the performance of machine learning models trained on a reduced
data set compares to standard USR
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7. To explore the performance differences generated when training models using the
full conformer model for every compound as opposed to using only the LECs.

1.5 | Approach
This project will be divided into three main tasks. First, before any experiments can
be carried out, conformers have to be generated for the active and decoy molecules for
the target proteins under consideration. This step is necessary because USR is a shape-
based similarity matching technique and the various shapes a molecule can take have
to be considered when performing the virtual screening process. In order to do this,
we will make use of the freely available, open-source Cheminformatics package RDKit.
Recommendations for doing this which we will follow are presented by Ebejer et al.
(2012). Conformer generation is expected to generate several gigabytes of data and big-
data techniques will be used to complete this task in a reasonable time.

Once conformer generation is complete an RDKit-based implementation of USR and
its variants - CSR, ElectroShape 4D and ElectroShape 5D will be developed. These im-
plementations will then be used to generate performance scores on the conformers gen-
erated previously. These scores will then be compared to those in the literature in or-
der to understand how the use of DUD-E in lieu of DUD affects shape-based similarity
search algorithms. In addition, the scores will also be used as benchmarks against which
to compare the scores obtained through machine learning.

The next step will be to select suitable machine learning models as discussed in
Section 1.3 and train them on the generated conformer data. The chosen algorithms will
be Gaussion Mixture Models, Isolation Forests and Artificial Neural Networks. The
performance scores obtained by these models will then be compared to those obtained
by USR.

Further to this, additional experiments will be performed for each Machine Learning
(ML) with varying fractions of the generated conformer data in order to explore how the
performance of the ML models varies with smaller training sets. These experiments will
be carried out for models trained with full conformers as well as with LECs in order to
determine the significance of the performance hit when using LECs.

Due to the large volume of data created by the conformer generation step, the ex-
periments will involve a significant element of big-data processing, requiring the use of
distributed processing clusters in order to execute within a reasonable time-frame.
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1.6 | Results
The results we obtained by the end of the project are significant, with average perfor-
mance improvements on the order of 400% over standard ElectroShape 5D and maxi-
mum improvements on the order of 900%. Moreover, we show that the performance
of the machine learning models is sustained as the size of the available training data is
decreased. We therefore demonstrate that, while machine learning has proven to be of
use in other virtual screening contexts, the USR family of techniques is also a promising
target for the application of machine learning algorithms.

1.7 | Document Structure
This dissertation will be structured as follows.

The Background and Literature Overview chapter will present comprehensive back-
ground information regarding Cheminformatics, and virtual screening in general while
delving in more detail into the USR family of techniques. It will present an overview of
the existing literature regarding the topic and of the current state-of-the-art results.

The Methodology chapter will focus on the work done to achieve the aims and ob-
jectives. Here we will present a comprehensive overview of the machine learning mod-
els chosen, along with clear supporting arguments as to why such choices were made.
We will also present detailed accounts of all the processes developed as well as the re-
sources that were used during the implementation phase of the project.

In the Evaluation and Results chapter, we will present a detailed overview of all
the experiments that were performed as well as the results obtained. In this chapter we
will describe in detail the common evaluation methods used in the field and then apply
them in order to formally evaluate the performance of our models.

In the Discussion chapter the results obtained will then be considered and con-
trasted within the context of the published work in the fields of virtual screening and
USR. This chapter will also present an overview of how the work carried out during the
course of this research project complements and improves the work previously carried
out in the field.

Finally, in the Conclusion chapter we will revisit the fundamental aspects of the
topic tackled by the dissertation, presenting an overview of our approach to the problem
and of the results obtained, highlighting the contributions of this research to the field.
Here we will outline the way in which the work carried out meets the goals set out in
the aims and objectives and finally, will also propose future work that can be tackled in
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order to further research in the field.
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2

Background & Literature Overview

Cheminformatics, or chemoinformatics, is a relatively recent field of study concerned
with applying results from other fields such as computer science, statistics and machine
learning to problems in the field of Chemistry. The term Chemoinformatics was coined
by Brown et. al. (1998) where it was descrbed as:

Chemoinformatics is the mixing of those information resources to transform data
into information and information into knowledge for the intended purpose of making
better decisions faster in the area of drug lead identification and optimization.

A common task within the domain of cheminformatics is to process libraries of dig-
ital representations of chemical compounds in order to extract new information and
results without the need of real-world testing in the lab.

Compound libraries used in cheminformatics can be collections of real molecules,
however they can also consist of virtual molecules which are generated mathematically
using various methods and by which the possible permutations of chemical space can
be sampled and explored, possibly resulting in the discovery or invention of new, useful
and patentable molecules. Compound libraries can therefore contain information about
millions of chemical compounds, comprising terabytes of information and it is only
with the recent increase in availability and affordability of cheap processing power and
storage that cheminformatics became practical and cost-effective.

High Throughput Screening (HTS) is an automated, or semi-automated process,
wherein a large number of chemical compounds are tested for some biological activ-
ity simultaneously, such compounds often being taken from pre-prepared, often com-
mercially obtained, compound libraries. HTS however, apart from requiring specially
equipped laboratories, is also expensive to carry out, both in financial terms as well as
in terms of time.
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The term Virtual Screening refers to a number of techniques in cheminformatics that
are designed to pre-screen compound libraries via computational means, so as to iden-
tify likely leads, i.e. compounds that have a high probability of binding to a given target
protein and therefore exhibit drug-like properties. The most likely leads can then be
preferentially tested in HTS, resulting in a streamlined process which yields a higher
number of hits with reduced time and cost.

2.1 | Virtual Screening
Virtual Screening techniques broadly fall into two main categories: Structure-Based
Virtual Screening (SBVS) and Ligand-Based Virtual Screening (LBVS). Structure-based
techniques focus on using structural information about target proteins to perform shape-
based matching of molecules to known binding sites on the protein’s surface, a process
known as protein-ligand docking (Eckert and Bajorath, 2007; Lyne, 2002). Ligand-Based
Virtual Screening (LBVS), on the other hand focuses on using compounds previously
known to bind successfully to a given target protein as templates against which to com-
pare other unknown compounds, the assumption being that similar molecules will bind
to the same protein.

Virtual screening studies can be retrospective or prospective. A retrospective virtual
screening study is performed using a dataset of compounds that has been pre-categorised
into actives and decoys and is used to assess the efficacy of a particular virtual screen-
ing method or algorithm at identifying known actives. As such, a retrospective study
is done completely in silico and is not expected to yield any new, previously unknown
leads. A prospective study, on the other hand, is focused on using a virtual screening
method on a database of test compounds in order to identify possible unknown leads
which are then subsequently tested in the lab, hopefully identifying one or more active
compounds.

2.1.1 | Structure-Based Virtual Screening
SBVS algorithms rank molecules by their calculated binding affinity which is approxi-
mated by evaluating some scoring function based on the shape of the molecules and the
target protein. The theoretical basis underpinning SBVS is Emil Fischer’s lock and key
hypothesis, devised in the 19th century. Fischer postulates that a molecule will bind to
a protein if it matches the shape of a binding site on the protein like a key matching a
lock (Fischer, 1894) as illustrated in Figure 2.1.
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Figure 2.1: A simple illustration of Fischer’s Lock-and-key principle.

SBVS is a computationally demanding process for several reasons. Molecular dock-
ing involves operations on 3-dimensional structures that are sensitive to rotation, scal-
ing and translation. Such structures have to be docked onto the target protein subject
to complex energy constraints in order to realistically simulate molecular binding. Ad-
ditionally, molecules are, in general, not rigid structures. Molecular bonds between the
atoms in a molecule can rotate, therefore any given molecule might be able to take an ex-
ceedingly large number of different shapes in 3-D space, only a small number of which
will match the protein binding site. These different configurations of a molecule are
referred to as conformations, conformational isomers or simply conformers.

Conformations for a given molecule are computationally generated by probabilistic
sampling of the molecule’s possible poses, taking into account all its rotatable bonds
and minimising the resulting candidate conformers with respect to energy constraints
imposed by the molecule’s structure so as to approximate stable conformational shapes
at the molecule’s energy minima (see Section 3.2).

2.1.2 | Ligand-Based Virtual Screening
LBVS, in contrast to SBVS, assumes no prior knowledge about the properties or shape
of the target protein. Instead, in LBVS, molecules already known to bind successfully to
a given target protein are used as templates against which to compare other unknown
molecules with the aim of finding those that are most similar to the template, and hence
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likely to also bind to the protein. Such known template compounds are called ligands or
actives. Compounds which exhibit the highest similarity scores to the actives will have
a high probability of also binding to the same protein (Stahura and Bajorath, 2004).

The theoretical underpinning to this technique is referred to as the similar property
principle (Johnson and Maggiora, 1990), which states that similar objects will often ex-
hibit similar properties because changes in nature are usually gradual. When applied
to LBVS the similar property principle means that molecules that are similar to a given
active will probably have similar properties.

LBVS techniques can be subdivided into three main groups (Stahura and Bajorath,
2005).

� Filtering uses databases of known functional groups, i.e. molecular structures known
to be related to a given molecular characteristic, in order to screen compound
datasets for compounds likely to exhibit one or more desired characteristics.

� Similarity Search involves the extraction or calculation of molecular descriptors
from various molecular properties, such as chemical composition, electrical char-
acteristics or molecular structure. These molecular descriptors are then compared
with those for the known active ligands and a similarity score inferred from the
comparison. Thousands of different possible types of molecular descriptors have
been devised, with applicability in differing scenarios. These techniques can be
used when at least one ligand is known which binds to the target protein.

� Compound Classification techniques can be used when a number of related or
unrelated actives are known to bind with a target protein. This allows the use
of techniques such as clustering and partitioning to be performed in addition to
similarity search so as to obtain better discrimination between active and non-
active compounds in the unknown dataset.

A common approach in Similarity Searching is that of Fragment-based similarity search-
ing, or Molecular 2D fingerprinting (Willett, 2006; Willett et al., 1998). This involves en-
coding molecular information, such as the presence or absence of given chemical frag-
ments, structural features such as atomic rings, various ranges of molecular descriptors
and other items of information into a fixed-size binary bit string, referred to as a molec-
ular fingerprint. The similarity between two different molecules can then be estimated
by comparing the respective bit strings using some standard similarity or distance met-
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ric. The Tanimoto Similarity Coefficient is a popular metric that is often used, and is
defined as:

Ts(X, Y) = ∑i(Xi ∧Yi)

∑i(Xi ∨Yi)
(2.1)

where X and Y are bitmaps and Xi is the ith bit of X. Other similarity indexes apart
from Tanimoto are also possible, however (Stahura and Bajorath, 2004).

An alternative class of similarity searching methods is that of Shape-Based Similarity
Searching, or Molecular Shape Comparison. Using this class of techniques, a similarity co-
efficient between pairs of molecules is calculated based on their shape in 3D space. In a
similar manner to SBVS, these methods also leverage Fischer’s lock and key hypothesis
in order to posit that similarly shaped molecules are likely to bind to the same bind-
ing pocket in the target protein. Molecular shape comparison techniques are known
to yield fewer matches than 2D fingerprint methods (Venkatraman et al., 2010), how-
ever the matches they identify tend to be different to those found by 2D fingerprints
and are therefore, nevertheless useful (Finn and Morris, 2013). Additionally, in contrast
to 2D fingerprinting, shape-based methods are capable of performing scaffold hopping,
meaning that molecules having a similar shape to an active, but composed of different
elements can still be identified as highly similar. This can result in the discovery of com-
pounds that show similar biological activity to a known active, while circumventing
issues such as patent restrictions (Ballester and Richards, 2007b).

Similarly to SBVS, and in contrast to 2D fingerprinting, Molecular Shape Compar-
ison is also sensitive to molecular conformation and therefore the use of this class of
techniques normally necessitates the generation of a large number of conformers in or-
der to search through the possible shapes that a molecule might take.

MSC can be broadly divided into two classes of technique. Superposition approaches
attempt to find the optimal superposition of the two molecules being compared through
a process of three-dimensional rotation so as to achieve the best possible similarity score.
An example of a superpositional approach is the ROCS method (Rush et al., 2005) which
iteratively maximises volume overlap between two molecules by incremental rotation
in order to quantify a similarity score between them.

Non-superposition approaches, on the other hand, avoid this process by using some
similarity measure that does not depend on molecule superposition (Ballester and Richards,
2007b). For example, in the Shape Signatures method (Zauhar et al., 2003), a ray reflect-
ing within the volume of the molecule is simulated. The length of each segment of
the simulated ray between two reflections is collected into a probability distribution
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histogram. The histograms thus derived for two molecules can be compared using a
simple distance metric such as the L1 norm, or Manhattan Distance:

L1 = Σi(H1
i − H2

i )

where H1 and H2 are vectors and H J
i is the ith element of vector H j.

In general, superposition approaches tend to yield better results than non superpo-
sition methods (Good and Richards, 1998), they are, however, much more processing-
intensive, and hence slower, due to the requirement of finding the optimum alignment
of the molecules being compared.

Ultrafast Shape Recognition (USR) is a non-superpositional technique developed in
Ballester and Richards (2007a,b) that involves distilling molecular shape into a rotation-
invariant descriptor vector made up of 12 real numbers. These descriptors are then
compared directly using a modified Manhattan distance metric, obviating the need for
molecule alignment.

The greatest advantage of this method is the exceedingly concise way in which the
shape of a molecule is condensed into a small 12-element descriptor. Comparisons be-
tween such small descriptors are computationally inexpensive to perform and this fea-
ture of the method makes it orders of magnitude faster than any other shape-based
similarity measure that existed at the time.

This method was developed in 2007, however, extensions to this algorithm have
since been proposed that augment the purely shape-based descriptors of USR with
other physico-chemical properties of the molecule, examples of which are Electroshape
(Armstrong et al., 2010), and USRCAT (Schreyer and Blundell, 2012), which add atomic
partial charges and atomic types to pure USR descriptors respectively, obtaining better
virtual screening scores than the original USR algorithm.

2.2 | Ultrafast Shape Recognition Family of Methods
The USR technique was first described by Ballester and Richards (2007a,b) wherein the
authors proposed a novel non-superpositional shape-based virtual screening technique
meant to preserve the screening performance of superpositional techniques while ob-
taining the speed benefits of non-superpositional methods.

In their research, the authors point out that the shape of a molecule, or, more pre-
cisely, a conformer, can be encoded by taking the Euclidean distance of each atom to a
predetermined number of centroids located within the space occupied by the molecule.
The number and position of the centroids can be arbitrary, however, while pointing out
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Figure 2.2: Illustration of USR centroids computed for a sample conformer of the Zi-
dovoudine molecule. Centroids are indicated with yellow spheres. Lines between ev-
ery centroid and the molecular centre are displayed for clarity. Four rotations of the
molecule are illustrated.

that their selection had not been validated to be the optimal one, the authors chose four
well-defined centroids as follows:

1. The molecular centroid (ctd)

2. The closest atom to the centroid (cst)

3. The furthest atom from the centroid (fct)

4. The furthest atom to fct (ftf )

Centroids computed for an example molecule are shown in Figure 2.2. Computing
the Euclidean distances of all the atoms in the conformer to each of these four centroids
yields four separate distance distributions of size proportional to the number of atoms
making up the molecule.

As the authors indicate, however, for several reasons these distributions are not ideal
to work with for the purposes of similarity searching. Most importantly, making use of
these distributions as-is, it would not be possible to compare molecules having differ-
ing numbers of atoms because the distributions yielded by molecules of different sizes
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Figure 2.3: Illustration of the construction of shape descriptors using the Ultrafast Shape
Recognition algorithm. The first three moments of the atomic distance distributions
from 4 centroids are combined into a 12-element vector descriptor. Reproduced from
Ballester and Richards (2007b)

would also be of different sizes. In addition to this, distributions are normally repre-
sented as histograms, however this would still leave open the question of finding an
optimal bin size given distributions of wildly differing sizes and characteristics gener-
ated from a database of molecules, not to mention the storage volume and processing
power required for their processing.

Ballester and Richards (2007a) solve these problems by pointing out that a distri-
bution is completely determined by its statistical moments (Hall, 1983). Making use
of this result from statistics, they condense the four distributions into their respective
first three moments, corresponding to the mean, the variance and the skewness of the
distribution. This results in a vector of 12 decimal values making up a descriptor en-
capsulating shape information for a given conformer. The authors propose using this
vector as a stand-in for the molecule’s 3D structure in similarity comparisons. This pro-
cess is illustrated in Figure 2.3. Subsequently, Ballester et al. (2009a) modify this process
by taking the square root and cube root of the second and third moments respectively,
thus normalising them to a scale comparable to that of the first moment and resulting
in better similarity matching performance.

The resulting descriptors could, in theory, be compared to each other using any sim-
ilarity measure, however Ballester et. al chose to use a metric based on the Manhattan
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distance according to Equation 2.2.

Sqi = (1 +
1
12

12

∑
l=1
|Mq

l −Mi
l |)−1 (2.2)

where Sqi gives a similarity value between the query conformer q and the conformer
being screened i and ~Mq and ~Mi are the descriptor vectors for the query conformer and
the conformer being screened, respectively. Here the sum is normalised by dividing it
by the number of elements in the USR descriptor.

In Ballester et al. (2009a) the USR method is evaluated and compared to EShape3D,
an existing commercially available non-superpositional method and is found to offer,
on average, significantly better ranking performance. In this paper, the authors perform
their evaluation of the USR algorithm basing themselves on the Enrichment Factor (see
Section 2.6).

In Ballester et al. (2009a), the authors point out that when a molecule binds to a pro-
tein, it is possible for profound conformational changes to take place in the molecule in
order to allow it to bind into the binding pocket. Additionally to this, multiple shapes
could successfully bind to the protein for several reasons – the protein binding pock-
ets themselves could exhibit a degree of flexibility allowing them to accept a range of
molecule shapes, resulting in different binding modes. It is also possible for a ligand to
bind to a binding pocket without being completely surrounded by it, meaning that only
part of the conformer shape would be relevant to the similarity matching. Furthermore,
a molecule having the right shape to bind to the protein might not, in fact, do so due
to unfavourable interactions between the atoms and the interface between itself and the
protein’s binding site.

Due to these complicating factors, the only definitive way of determining the 3-D
shape of a conformer to use as a search template is to obtain it experimentally through
X-Ray crystallography or Nuclear Magnetic Resonance while the molecule is actively
bound to the protein. In absence of such experimentally determined conformers, as-
sumptions have to be made that could impact the ranking performance of the algorithm.

While cognizant of the above problems, in cases where experimentally determined
active bound conformations are not known, as an approximation to the bound active
conformation the authors propose the use of the LEC - the conformation with the lowest
energy - and therefore the most stable. As the authors point out, this introduces errors
in the process, however their experiments indicate that using the LEC as the search tem-
plate results in an acceptable ranking performance compared to the maximum possible
performance.
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In order to verify the method’s efficacy in representing molecular shape, the authors
take the LECs of all the actives for a given protein and perform hierarchical clustering
on their USR descriptors. This reveals a number of similar clusters corresponding to the
binding modes associated with the target protein, indicating that a) the USR descriptors
can, in fact, be used as stand-ins for a molecule’s shape and b) use of the LEC is a valid
alternative to use in virtual screening.

Additionally, selecting the cluster holding the highest number of conformers effec-
tively gives the most common active shape. The authors also propose using the closest
conformer to the centre of the largest cluster as a query template, pointing out that on
average it yields better enrichment factor than taking a conformer at random to use as
a query template and it also gives an enrichment factor that is not much lower than the
maximum possible enrichment factor for the target protein.

In the same year, Ballester et al. further validated their method by a prospective
screening study in which they managed to identify novel inhibitors for arylamine N-
acetyltransferases through USR (Ballester et al., 2009b). Using the identified leads, they
purchased and tested a number of the predicted actives, obtaining a hit rate of 40%,
considered a very good result for virtual screening.

2.2.1 | Extensions to USR
The first extension to the USR method was proposed in Cannon et al. (2008) where the
authors combined USR descriptors with MACCS fingerprints, a 2-D fingerprint method
which generates bitmask-like molecular descriptors with each bit encoding for some
physico-chemical feature, such as the presence of rings, presence of less than 3 oxygen
atoms, presence of halogen atoms etc. (Brown and Martin, 1996). The authors com-
bine the two descriptors by simple concatenation and train a Random Forest multi-class
classifier on the generated descriptors. The results of the study show that the combi-
nation of USR and MACCS descriptors on average outperforms the results obtained by
either MACCS or USR alone. It is interesting to note that the authors, here, also ex-
periment with extending the number of moments calculated when generating the USR
descriptors, using three moments (as per the standard USR), four and five moments.
Their findings indicate that the best performance occurred when using four moments,
slightly outperforming standard USR descriptors with three moments.

An interesting extension to USR was proposed in Armstrong et al. (2009) wherein the
authors propose a technique they name Chiral Shape Recognition (CSR). In their paper,
the authors point out that the standard USR method does not have the possibility of
distinguishing between conformers that are enantiomers. An enantiomer is one of a pair
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of molecules that are mirror images of each other and therefore cannot be superimposed
over each other. Enantiomers possess the property of Chirality, defined as the property
of an object of being distinguishable from its mirror image. These types of objects are
characterised by the absence of a plane of symmetry or a centre of symmetry.

The inability of USR to distinguish between chiral molecules means that the algo-
rithm would classify enantiomers as similar to each other, however the fact that one
enantiomer is an active does not imply that its mirror image is also active as its shape
would not necessarily conform to the target protein’s binding pocket. This introduces
errors in the rankings produced by USR.

In order to remedy this problem, the authors propose a modification to the selection
of USR centroids. They point out that the cross product is an operation that does not
vary under translation and rotation but does under reflection. Formally, if ~a and~b are
vectors and ρ is any reflection, then

ρ(~a)× ρ(~b) = −ρ(~a×~b)

In view of this property, the authors assign the first three centroids as per the original
USR algorithm, as follows:

1. The molecular centroid (C1)

2. The furthest atom from the centroid (C2)

3. The furthest atom from C2 (C3)

The remaining centroid, C4, however is calculated differently. Two vectors are defined
such that:

~a = C2− C1

and
~b = C3− C1

The normalised cross product~c of vectors~a and~b is then given by:

~c =
(
||~a||

2

)
~a×~b
||~a×~b||

(2.3)

The fourth centroid is then defined as:

C4 = C1 +~c
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This definition means that the first three centroids for mirror image enantiomers are
all flipped around the centre, i.e. C1′ = −C1, C2′ = −C2 and C3′ = −C3. However, due
to the property of the cross product, in contrast to the first three centroids, the fourth
centroid is the same in both enantiomers. This ensures that the algorithm successfully
distinguishes between conformers that are mirror images of each other.

The evaluations performed by the authors on the CSR algorithm showed a max-
imum improvement of 20% at the 0.25% enrichment level which is a significant im-
provement in performance over USR.

Also in 2009 Steven R. Shave proposed three novel USR-based techniques in his
D.Phil thesis (Shave, 2010) - Ultra Fast Shape Recognition with Atom Types (UFSRAT),
Volumetric Shape Recognition with Atom Types (VolRAT) and UFSRGraph. In UFSRAT
the author uses the same concepts as USR, i.e. taking the moments of distance distribu-
tions to four centroids, however, the method first partitions the atoms of the molecule
into three types - Hydrophobic, Hydrogen-bond donors and Hydrogen-bond acceptor.
The USR process is then performed on all the molecules, as per the standard USR, and
again on each of these partitions separately, resulting in a 48-element descriptor incor-
porating information about the three atom types and their spatial distribution.

VolRAT is a variation on UFSRAT in which not only the atom types and distance
distributions are encoded, but also the volume occupied by the atoms in the molecule.
This is done by generating a grid of points centred around each molecule up to a de-
finable radius and grid spacing. These points are then added to the appropriate atom
type partition and used to generate the USR descriptors. The intention behind this idea
is that using a blurred distribution in the similarity calculation might lead to molecules
having a greater chemical diversity being picked out as similar to the query molecule
and hence finding more leads and a greater scope for scaffold hopping.

UFSRGraph is another variation of UFSRAT which aims to get around the need for
pre-generation of conformers before carrying out the virtual screening query. This is
achieved by generating a graph representation of the molecule with vertices represent-
ing atoms and edges the bonds between the connected atoms. The edges are weighted
according to an ideal bond length calculated using the Tripos force field. Three cen-
troids are used rather than four as for the other algorithms. The first centroid is taken
to be the atom closest to the middle of the longest path along the graph. The second
centroid is defined as the furthest atom from the first centroid. The third centroid is the
furthest atom from the second centroid. Distance distributions are compiled for each of
the three centroids by taking the shortest path from each centroid to all the other atoms
in the molecule and descriptors are calculated in the usual manner.

Shave does not perform retrospective screening studies using UFSRAT, VolRAT and
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UFSRGraph for evaluation purposes and instead performs prospective screening for
a small selection of target proteins using compounds from the Edinburgh University
Ligand Selection System (EDULISS) dataset (Hsin et al., 2010). Due to this, standard
performance metrics were not available for these methods.

Subsequently, the CSR method was extended by Armstrong et al. (2010) method,
wherein the authors pointed out that the USR descriptors can be extended by quanti-
ties that are not spatial in nature, but instead pertain to physico-chemical properties of
the atoms in the molecule themselves. In following with this idea, the authors extend
their previous CSR descriptors by augmenting them with information about the electro-
static complementarity or partial charge of the atoms within the molecule, producing an
algorithm they called ElectroShape.

The physical quantity of charge is the property of matter that causes it to experience
a force when placed in an electromagnetic field. There are two types of charge, positive
and negative, carried by protons and electrons respectively. According to the quantum
theory of physics, the property of charge is quantized and can only occur as multiples
of a fundamental unit of charge of approximately 1.602× 10e−19 coulombs, called the
elementary charge, and written as e. This is also the smallest amount of charge that can
exist in a free state.

When atoms form a chemical bond one or more electrons are shared between atoms,
oscillating between them. While the bonded atoms as a whole always have a charge that
is an integer multiple of the elementary charge, zones between and around the atoms
themselves can be considered to have a fractional or partial charge. Atoms also have
varying tendencies to draw shared electrons when bonded chemically to other atoms -
a property called electronegativity. When a neutral atom bonds to another neutral atom
that is more electronegative, electrons are drawn away from its nucleus towards the
other atom’s nucleus, causing it to have a positive partial charge and the other atom a
negative one.

Armstrong et al. point out that electrostatic complementarity is an important feature
when considering protein-ligand interactions which however, is completely ignored in
purely shape-based similarity approaches. As a simple example, if one considers the
two molecules carbon dioxide (CO2) and hydrogen cyanide (HCN3), as shown in Fig-
ure 2.4, their shape is highly similar and could easily be recognised as such by a purely
shape-based similarity method such as USR, however their partial charge distribution is
very different, and a method that incorporates this information would be more capable
of distinguishing molecules in these kinds of situations.

The insight that allows the authors to incorporate partial charges into the USR scheme
is the realisation that, similarly to the 3D coordinates used by USR, partial charge is sim-
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Figure 2.4: An illustration of the different partial charge distribution in two structurally
similar molecules. Reproduced from Armstrong et al. (2010).

ply a number, and can be treated as a fourth coordinate along with the other three spatial
coordinates of USR.

Consequently, in the ElectroShape algorithm, an atom is considered to have a coor-
dinate (x, y, z, q) in four dimensional Euclidean space, with x, y and z being the spatial
coordinates of the atom and q being the coordinate representing the partial charge. In
general, however, there is a problem with this scheme in that the units of partial charge
(electron charges) are different from the units of the spatial coordinates (Angstroms).
Because of this disparity, the algorithm makes use of a scaling factor µ with units of
Angstroms per electron charge in order to scale q accordingly. This gives atomic coordi-
nates of the form (x, y, z, µq)

Naturally, selection of centroids is also slightly modified from plain USR. Five cen-
troids are defined for ElectroShape. The first three centroids c1-c3 are defined in the
same way as for CSR, except that this time the vector arithmetic is performed in four
dimensions. In order to generate the fourth and fifth centroids, the equivalent vector to
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~c in equation 2.3 is first calculated and then used to generate the centroids as follows:

c4 = (c1)s +~c + (0, 0, 0, µq+)

c4 = (c1)s +~c + (0, 0, 0, µq−)

where (c1)s is the spatial component of c1 and q+/q− are, respectively, the highest
and lowest partial charges in the entire molecule. Since, in this case five centroids are
being used, as opposed to the four for USR, the ElectroShape descriptors consist of 15
elements rather than the 12 elements of USR.

For ElectroShape, Equation 2.2 is modified to give Equation 2.4

Sqi = (1 +
1
15

12

∑
l=1
|Mq

l −Mi
l |)−1 (2.4)

where the sum is again normalised by dividing it by the number of elements in
the descriptor, which is 15 in the case of ElectroShape. The authors point out that this
method of extending USR descriptors is not restricted to partial charge and, on the con-
trary, is quite general, making it possible to extend the descriptors using any numeric
quantity distributed among the atoms making up the molecule.

ElectroShape achieved significant performance improvements over USR and CSR,
scoring an enrichment factor of 13.3 at 1%, compared to 7.4 and 7.7 for USR and CSR
respectively.

Schreyer and Blundell (2012) proposed another method called Ultrafast Shape Recog-
nition with CREDO Atom Types (USRCAT). This technique is based on UFSRAT, how-
ever in this case the similarity search algorithm was implemented as part of the CREDO
Structural Interatomics Database (Schreyer and Blundell, 2009) and uses the atom type
classification maintained therein rather than the atom classification in UFSRAT. The
CREDO atom types used in this algorithm are hydrophobic, aromatic, hydrogen bond
donor and hydrogen bond acceptor. Additionally, the authors point out that in UFS-
RAT, since centroids are selected separately for every atom type distribution, it is pos-
sible that there are not enough atoms of a given type to generate a distribution and/or
to generate statistical moments. In USRCAT, this problem is solved by taking the same
centroids for generating the distributions for all the atom types. Additionally, re-using
the same centroids has been found to result in better performance because the distri-
butions resulting from the scheme encode the different atom types with respect to the
overall shape of the molecule. Using this scheme, USRCAT generates descriptors with
60 elements. USRCAT obtained a slightly higher average performance score than Elec-
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troShape in retrospective screening on the DUD-E database with an EF0.25% of 15.64 as
opposed to 8.84 for USR and 14.48 for ElectroShape.

Armstrong et al. subsequently continued their work in 2011 (Armstrong et al., 2011)
by proposing a further extension to the ElectroShape method which they termed ES5D.
In this method they extended the descriptor proposed in their earlier paper with the
quantity of lipophilicity as a fifth dimension. Lipophilicity is a measure of the solubility
of a compound in fats and oils. The lipophilicty of a compound is expressed as a Par-
tition Coefficient P - the ratio of the concentrations of a compound in a mixture of two
immiscible solvents. In the case of lipophilicity, the solvents used are usually water and
1-octanol. This quantity is usually expressed as the logarithm of the partition coefficient
logP.

Experimentally, logP is measured by dissolving the compound under test in a mix-
ture of water and 1-octanol and then measuring the concentrations of the compounds in
each of the two solvents. The lipophilicity can, however, also be estimated computation-
ally by considering the contribution to the final logP value made by each atom in the
molecule, such contributions being computed from a training set of compounds with
experimentally measured logP. This approximation is referred to as Atomic Lipophilicity
or aLogP.

In ElectroShape5D, the atomic contributions to the aLogP are considered as a fifth di-
mension along with the fourth dimension provided by the partial charges in the original
ElectroShape method.

The authors demonstrated that adding lipophilicity to the spatial components and
the partial charge introduced in their 2009 work further improves similarity matching
in benchmarking studies, obtaining an average EF1% of 14.6 compared to 13.3 in Elec-
troShape. ElectroShape5D is currently the latest member of the USR family of methods
and the one which obtains on average the best benchmarking scores.

In this section we have presented an overview of USR and the USR family of tech-
niques, giving an account of how the USR technique works and how successive im-
provements have been applied to the basic technique to improve its predictive power.
In the next section we will examine the techniques used in generating the conformers
that are required by shape-based LBVS techniques, including USR.

2.3 | Molecular Conformations
As discussed in the previous sections, molecules are, in general, not rigid structures.
The bonds between atoms can rotate, meaning that a molecule can potentially take a
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large number of different shapes. The different shapes a molecule can take are referred
to as molecular conformers.

Conformer generation is the process of using a computational representation of a
molecule, together with prior knowledge about the forces between atoms in order to
generate possible 3-D shapes that the molecule could conceivably take. These 3-D rep-
resentations are then used directly in SBVS or shape-based LBVS for docking and simi-
larity matching respectively.

As an example, some sample conformers of the Zidovudine molecule, an antiretro-
viral medication used to treat HIV/AIDS, are shown in Figure. 2.5. This molecule binds
to the Human Immunodeficiency Virus type 1 Protease protein. As can be seen from
the figure, and more clearly from the chemical structure of the same compound in Fig-
ure. 2.6, the molecule is made up of four groups connected by 3 rotatable bonds.

Appendix A contains further detailed background information about atomic forces
within a molecule and about conformer generation.

2.4 | Molecular Representation
In the DUD-E datasets we used for this project, molecules were supplied in Simplified
Molecular Input Line Entry Specification (SMILES) format. SMILES provides a manner
of describing the chemical composition and structure of a molecule as a simple string.
A SMILES string consists of a sequence of chemical symbols in the order in which they
are bonded in the molecule. For example, the SMILES string for ethanol (C2H5OH, Fig-
ure. 2.7) is CCO. Equally correct would be OCC and C(O)C, where parenthesis indicate
branching of the structure.

Ring structures in SMILES are indicated by splitting the ring at an arbitrary point
and labelling the split with numbers indicating adjacent atoms. For example the Diox-
ane molecule (C4H8O2, Figure 2.8) is represented by the SMILES string O1CCOCC1.
Aromatic ring structures with alternating single and double bonds are common in or-
ganic chemistry. In order to indicate aromaticity in a SMILES string, the atoms inside
the ring are written as lower-case. An example of this is Benzene (C6H6, Figure. 2.9).

A possible problem with SMILES is that, in general, there are multiple ways of en-
coding any one particular molecule. This is undesirable as detecting or searching for
identical molecules can be a problem when different representations are being used. In
order to mitigate this problem, several algorithms have been developed which, given a
molecule, generate exclusively one SMILES representation, termed the Canonical SMILES.
There is no one standard canonicalization algorithm, however, and every toolkit typi-
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Figure 2.5: Sample conformers for compound CHEMBL129(Zidovudine), an active com-
pound for Human Immunodeficiency Virus type 1 Protease. These renderings illustrate
the manner in which a molecule can take different shapes due to rotatable bonds be-
tween selected atoms. In this case, this compound has 3 rotatable bonds. Carbon atoms
shown in grey, Hydrogen in white, Oxygen in red and Nitrogen in blue.
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Figure 2.6: Chemical structure of Zi-
dovudine.

Figure 2.7: Chemical structure of
Ethanol.

Figure 2.8: Chemical structure of Diox-
ane (Hydrogens ommitted as per con-
vention).

Figure 2.9: Chemical structure of Ben-
zene.

cally uses its own. For the purposes of this research project, however, we did not need
to compare SMILES strings, therefore this limitation did not affect us.

2.5 | Machine Learning Aspects
In line with the declared aims and objectives for this research project, we have explored
the use of several machine learning techniques as alternatives to the similarity metric
in the USR algorithm in an attempt to obtain better similarity ranking scores. In this
section we present a detailed overview of the machine learning techniques we have
deemed to be most suitable for this task. For every technique we describe, we present
our motivation for choosing such a technique and how the technique is suited to this
particular problem along with a detailed description of each technique.
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2.5.1 | Gaussian Mixture Models
A Gaussian Mixture Model is a generative machine-learning model that models a dis-
tribution of data points using a combination of Gaussian distributions. It can be consid-
ered to be a clustering algorithm similar to k-means (Hartigan and Wong, 1979), how-
ever in a GMM, cluster membership of a data point is not absolute but instead can be
influenced probabilistically by several centroids.

2.5.1.1 | The Gaussian Distribution

The GMM (Reynolds, 2015) is an unsupervised algorithm that models data points as
mixtures of weighted Gaussian distributions.

The Gaussian Distribution (also known as the Normal Distribution) is a probability
distribution governed by two parameters - the mean µ and the standard deviation σ =√

variance and is given by Equation 2.5

f (x|µ, σ) =
1

σ
√

2π
exp(− (x− µ)2

2σ2 ) (2.5)

Some example Gaussian curves can be seen in figure 2.10. As can be seen from
this figure, the positioning of the curve along the x-axis is governed by the mean (µ)
parameter, while the sharpness of the peak is influenced by the standard deviation (σ)
parameter.

The single-variable Gaussian Equation 2.5 can be generalised to N dimensions by
making x and µ into vectors of size N and the standard deviation into the NxN covari-
ance matrix Σ. This is shown in Equation 2.6

N (~x | ~µ, Σ) =
1

(2π)
D
2 |Σ| 12

exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(2.6)

where T is the number of data points collected.

2.5.1.2 | Combining Gaussians

In general, a given distribution of data points will not necessarily be fitted satisfactorily
by a single Gaussian, however we can attempt to approximate the arbitrary distribution
by taking the weighted sum of a number of Gaussians as the probability of a point being
a member of the distribution. This is termed a Gaussian Mixture Model and is described
by Equation 2.7

f (x|µ, Σ) =
M

∑
k=1

ck
1√

2π|Σk|
exp[(x− µk)

TΣ−1
k (x− µk)] (2.7)
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Figure 2.10: Some example Gaussian distributions with various means and standard
deviations.

where M is the number of Gaussians, also known as components, making up the
GMM. The parameters of the GMM are therefore:

� the number of Gaussian components making up the model(M)

� the Gaussian weights ck such that ∑k ck = 1

� the set of mean vectors ~µ, one per gaussian

� the set of covariance matrices Σ, one per gaussian

A graphical representation of a simple 1-D GMM can be seen in Figure 2.11 and that
for a 2-D GMM in Figure 2.12.

A GMM is trained using the Expectation Maximization algorithm (Dempster et al.,
1977). This algorithm initially assigns tentative initial values to the model parameters.
These could be random, but they are generally assigned using the k-means clustering
algorithm on the data points. Once initial values are set, two steps, analogous to the
k-means algorithm are repeated until convergence:

� E-Step: Evaluate the responsibilities of every component using the current param-
eter values (the latent variables):

γ(x) = p(k|x) = p(k)p(x|k)
p(x)

=
ckN(x|µk, Σk)

∑M
j=1 cjN(x|µj, Σj

(2.8)
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Figure 2.11: A plot of a simple example 1-D Gaussian Mixture Model with two compo-
nents.

� M-Step: Re-estimate the parameters using the current responsibilities using the
below equations to update the means, weights and covariance respectively:

µj =
∑N

n=1 λj(xn)xn

∑N
n=1 λj(xn)

(2.9)

cj =
1
N

N

∑
n=1

λj(xn) (2.10)

Σj =
1
N ∑N

n=1 λj(xn)(xn − µj)(xn − µj)
T

1
N ∑N

n=1 λj(xn)
(2.11)

By repeating the above steps until convergence, i.e. until the subsequent updates to
the parameters are smaller than a preset threshold value, the optimal parameters for the
GMM can be obtained.

The most important hyper-parameter that has to be tuned in a GMM is the number
of Gaussian components to be used in the model. This can be expensive to determine,
and is usually found empirically by a grid-search process.
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Figure 2.12: A contour plot of an example 2-D Gaussian Mixture Model with four com-
ponents using dummy data.

The effectiveness of a GMM also depends on the constraints placed upon Σ, the co-
variance matrix. Putting no constraints on Σ maximises the GMM’s expressive power,
however also involves heavy computation. In most cases, Σ is constrained to be a di-
agonal matrix, resulting in lighter computational requirements while sacrificing some
accuracy in the model. This can be compensated for, however, by using more compo-
nents and for this reason, much of the results present in the literature assume diagonal
Σ.
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2.5.1.3 | Application in USR Similarity Matching

GMMs have wide-ranging applications in machine learning. They have been used in
speech recognition (Stuttle, 2003), audio speech classification (Siegler et al., 1997), for
language and speaker identification (Reynolds, 1995; Reynolds and Rose, 1995), as well
as in visual object tracking (Santosh et al., 2013) and image enhancement applications
(Celik and Tjahjadi, 2011).

They have also already been used in virtual screening and protein-ligand docking
for example in (Grant and Pickup, 1995; Grant et al., 1996; Jahn et al., 2010, 2011).

The rationale behind the use of GMMs in USR similarity matching is the expected
clustering of active conformers in USR descriptor-space, corresponding to the proteins’
binding sites. In other words, if we plot the descriptors of all the active conformers for a
given target protein we would observe dense clusters marking the preferred conformer
shapes that bind successfully to the protein. This property of active conformer shapes
has previously been pointed out by Ballester et al. (Ballester et al., 2009a). This is a type
of clustering problem that is well suited for treatment using GMMs.

In this research project we trained GMMs for every protein target based on the active
compounds provided in DUD-E. We then used the trained GMM to rank the other com-
pounds by similarity. As a measure of similarity of a compound to the active template
we used the per-sample average log likelihood of all the conformer USR descriptors for
each compound being evaluated.

The Likelihood or likelihood function is defined as the probability that a set of statistical
parameters fit a set of given data. In this case, the likelihood is returning the probability
that the set of learned Gaussians in the GMM describe the given descriptor. The log of
the likelihood is often used as a method of avoiding underflow errors in which prob-
ability values are too small to be represented adequately by the numerical precision of
the processor. It also simplifies and speeds up the related calculations.

The per-sample average log likelihood is used to give an overall measure of the fit
of the entire conformer ensemble for a given compound relative to the trained GMM of
a template active compound. This scheme seems to work well (see Section 4), however
it is not the only one that could be used. For example, one could take the maximum
probability over the conformer ensemble. This, scheme, however was not evaluated
and should be considered as a candidate for future research.
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2.5.2 | Isolation Forest
The third machine learning algorithm that we have explored in the course of this project
is that of Isolation Forests (Liu et al., 2008). Isolation forests are a class of machine learn-
ing models known as ensemble models. Ensemble models make use of a collection of
simpler models to improve their predictions over those that would have been obtained
by any single one model. Isolation Forests are similar to the Random Forest algorithm
(Ho, 1995) in that they create a number of Decision Trees based on the training data and
averages the predictions from each decision tree to arrive at a final result. While Ran-
dom Forests are a supervised algorithm used to perform classification tasks, Isolation
Forests are unsupervised and are meant to be used to perform anomaly detection. Deci-
sion Trees are at the foundation of several other machine learning algorithms, including
Isolation Forest. Due to the importance of Decision Trees, the following section will give
an overview of the algorithm as a foundation for our subsequent discussion of Isolation
Forests.

2.5.2.1 | Decision Trees

A Decision Tree is a machine learning model that infers rules from a training set and
makes predictions according to those rules and it can perform classification as well as re-
gression predictions (Breiman, 2017; Myles et al., 2004). The advantage of decision trees
is that predictions made using them are explainable by considering the path through
the tree that was followed to arrive at the prediction. This is not the case when using
many other supervised algorithms such as Neural Networks.

A decision tree is constructed by recursively partitioning the feature space of the
training dataset, producing a set of recursive if/else rules which, at the leaf nodes, lead
to a prediction.

In general the main challenge to constructing a decision tree is the procedure of
choosing the feature to partition on at each recursive split within the algorithm. There
are several different algorithms that can be used, different ones being needed in regres-
sion and classification cases. As the problem of USR ranking is a regression problem,
we will detail the construction of a regression tree in this section.

The goal of constructing a decision tree is to partition the m-dimensional feature
space into p non-overlapping portions. The prediction yielded by the decision tree will
then be the mean of all the training observations within the partition under which the
test observation falls. The partitions are constructed recursively using an algorithm
called Recursive Binary Splitting (RBS).
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At every recursive step RBS seeks to find the split that minimises the Residual Sum
of Squares (RSS). The RSS is the square sum of the deviations of the predictions of an
estimation model and the actual data and in the case of a decision tree is can be written
as:

RSS =
M

∑
m=1

∑
i∈Rm

(yi − ŷRm)

where M is the number of non-overlapping partitions in feature-space, Rm is par-
tition m, i ∈ Rm are the test observations is partition Rm, yi is the prediction for test
observation i and ŷRm is the average regression value for the training observations in
partition m.

The problem of partitioning the feature space into M partitions in this way is ex-
tremely computationally intensive (NP-complete). The RBS algorithm mitigates this
problem by splitting the feature space recursively in a greedy fashion, i.e. it only con-
siders the minimisation of the RSS for each split and not for the feature space as a whole.
This makes it much more computationally feasible.

At each recursive step, the algorithm randomly permutes the features, evaluating
a number of potential splits and selects the one minimising the RSS at that point. The
algorithm is then applied to each of the two children nodes thus created and continues
recursively until a stopping condition is fulfilled, normally when a minimum RSS is
reached, a maximum tree depth or a set minimum number of training samples remain
within a leaf node.

2.5.2.2 | Ensemble Learning - Combining Trees into Forests

A single Decision Tree, being random in the way it generates partition splits, may not
necessarily give the best prediction performance on a given set of test observations.
Indeed, different decision trees trained on the same training data might yield different
predictions.

In order to mitigate this problem and improve the predictive performance of the
model, ensemble models have been proposed, which train several different decision trees
and arrive at a final prediction by combining all their outputs into a single, more accu-
rate, prediction.

One such ensemble algorithm is the Isolation Forest(Liu et al., 2008). Isolation Forests
are used to identify anomalies in a set of observations. Contrary to other clustering al-
gorithms which attempt to identify similar samples within the input dataset, Isolation
Forests explicitly identify anomalies within the data.

36



Chapter 2. Background & Literature Overview 2.5. Machine Learning Aspects

Figure 2.13: Isolating inlier point xi re-
quires 12 partitions Reproduced from
Liu et al. (2008)

Figure 2.14: Isolating outlier point xo
requires only 4 partitions Reproduced
from Liu et al. (2008)

It does so by exploiting the fact that, averaged over a number of Decision Trees,
the path length that will be needed to generate a prediction for an outlier will be, on
average, significantly shorter than that required for an inlier observation. An example
of this is shown in Figures 2.13 and 2.14.

In practice an anomaly score is calculated from the average path length. Since a
decision tree can also be considered a Binary Search Tree (BST), we can make use of the
result that the average path length of an unsuccessful search in a set of n BST instances
is given by:

c(n) = 2H(n− 1)− (2(n− 1)/n)

where H(i) is the Harmonic number, estimated by ln(i)+ 0.5772156649. Now, if h(x)
is the path length of a point x, c(n) is the average of h(x) and can be used to normalise
h(x). The anomaly score of a point x is therefore defined as:

s(x, n) = 2−
E(h(x))

c(n)

where E(h(x)) is the mean h(x) from the collection of decision trees. Using this
measure as an anomaly score ensures that if s is close to 1, then the point is almost
certainly an anomaly and if s < 0.5, then the point is safe to be regarded as a normal
instance.
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2.5.2.3 | Application in USR Similarity Matching

Notwithstanding its relatively recent publication, the Isolation Forest algorithm has al-
ready been used as an anomaly detection method in a variety of applications. It has
been used to detect anomalies in streaming data (Ding and Fei, 2013), detecting faults in
semiconductor manufacturing processes (Susto et al., 2017), as an aid in identifying and
mapping targets for mineral prospecting (Chen and Wu, 2019) and predicting faults in
software code changes (He et al., 2017), among other applications. To our knowledge,
however, this is the first time the algorithm has been applied to the problem of virtual
screening.

The rationale for using Isolation Forests as an algorithm for ranking USR descriptors
is by extension from Ballester et al. (2009a) wherein the authors showed that cluster-
ing the conformers of the active molecules for a given protein, several cluster centroids
emerge, corresponding to the shapes matching the binding modes of the target protein.

By definition, a large number of actives will fall on, or close to a given centroid,
forming high-density zones around the centroids. Non-binding conformers will fall
outside these high-density zones, making them into outliers or anomalies. Training an
Isolation Forest using the descriptors for the active compounds and ranking test points
by their anomaly score should yield results with good predictive power.

2.5.3 | Artificial Neural Networks
Artificial Neural Networks are machine learning models loosely inspired by the struc-
ture of the brain. Brain tissue is made out of cells called neurons whose job is to transmit
electrical signals (Kandel et al., 2000). A neuron is connected to other neurons through
a network of dendrites - tree-like branching extensions of the cell. The neuron receives
input signals from other neurons through its dendrites. Depending on the inputs it re-
ceives, the neuron generates an output signal along a long filament called the axon. The
axon terminates at a network of synapses which connect to the dendrites of other neu-
rons by secreting neurotransmitter molecules which bind to receptors in the dendrites,
generating, in turn, another input signal.

The brain consists of a mesh of billions of neurons allowing signals flowing be-
tween them with information processing being performed in a massively parallel fash-
ion. Given some sensory input, the brain is capable of modifying the functioning of the
neurons to emit the correct outputs in order to synthesise appropriate behaviour/effects
as the signals propagate through the network of neurons. This is, in essence, the process
known as learning.
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It is to be emphasised, however, that while being inspired by the structure of the
brain, ANNs do not attempt to model all its biological complexities, and is not meant to
mimic the brain in any meaningful way.

The initial algorithm that was inspired by the cellular structure of the brain, was
described by Rosenblatt (1957) and was called the Perceptron.

A perceptron is a binary classifier, i.e. function taking multiple real-valued inputs
and outputting a binary result and it is defined as follows:

f (x) =

1, if b + ∑m
i=1 wixi > 0

0, otherwise
(2.12)

where xi are the set of inputs, wi are a set of associated weights and b is a bias value.
These are usually represented in vector form as ~x and ~w so that equation 2.12 can be
rewritten as:

f (x) =

1, if ~w ·~x + b > 0

0, otherwise
(2.13)

In effect, the perceptron computes a weighted sum of its inputs and outputs a binary
value based on a decision boundary set by the perceptron’s bias and an inbuilt activation
function. It is easy to see how this algorithm approximates the function of a biological
neuron.

The algorithm to train a perceptron is simple:

1. Define a training rate r. This value will regulate the speed with which parameters
will be adjusted at every training iteration. If r is too small, training will be very
slow, but if r is too large, the system might never converge to a solution.

2. Define a maximum number of iterations to perform during training.

3. Initialise weights and biases to 0 or random values

4. For every training example (~Xi, Yi), obtain prediction

Pi(t) = f [~w(t) · ~Xi]

where Pi(t) is the prediction and ~w(t) is the weights vector at time t.

5. Update the weights to improve the prediction:

~w(t + 1) = ~w(t) + r(Yi − Pi(t))~Xi
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Figure 2.15: Example plot of the Sig-
moid Logistic activation function

Figure 2.16: Plot of the Rectified Linear
Unit function

6. Repeat above steps until convergence or maximum iterations are reached.

The activation function shown in Eqaution 2.12 is known as the Heaviside Step Func-
tion and is the simplest activation function possible, however others are possible. In
particular the logistic sigmoid function is often used:

hW (x) =
1

1 + e−W T x

where W is a column vector of weights and x is the column vector of input values.
A sample plot of the sigmoid function is shown in Figure 2.15.

Another activation function in common use is the Rectified Linear Unit or RelU. It is
defined as max(0, x) and is shown in Figure 2.16.

Initial interest in perceptron research dwindled when it was shown that they were
limited in the functions they could represent. The perceptron would only be able to
classify linearly separable patterns. For example, a single perceptron can simulate AND
and OR operations but not XOR (Mitchell, 1997). These limitations led to a decline in
the initial interest in neural network research, however interest resurged with increases
in processing power and the realisation that arranging perceptrons in layers with the
output of one layer feeding into the input of the next would permit the synthesis of a
far greater set of functions.

This arrangement became known as a multi-layer perceptron or a feed-forward neural
network, i.e. one in which the connections between neurons do not form a cycle. An
example of this is shown in Figure 2.17.

A neural network might have any number of hidden layers. A network with more
than two hidden layers is normally termed a deep neural network. While in theory, ac-
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Figure 2.17: Topology of a simple feed-forward neural network with 3 input neurons, 2
output neurons and 5 neurons in a single hidden layer.

cording to the Universal Approximation Theorem, a shallow neural network with one hid-
den layer can approximate any function (Csáji, 2001), a deep network will require fewer
neurons to approximate the same function, and hence is more efficient.

2.5.3.1 | Training a Neural Network: Back-Propagation

While the multi-layer neural network is much more powerful than the single-layer per-
ceptron, it cannot be trained using the simple algorithm used for the single-layer per-
ceptron as described above.

The procedure shown above for optimising the output of a perceptron is a special
case of an algorithm named Gradient Descent. In general the Gradient Descent algorithm
is intended to find the minimum in a convex function and it does so by iteratively mov-
ing from point to point along the curve in steps which size is governed by a learning
rate and by the gradient of the function at the current point. The closer to the minimum
the algorithm gets, the smaller the gradient and the smaller the steps it takes. The al-
gorithm terminates when the step size has reduced below a pre-set minimum (Mitchell,
1997).
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Concretely, given a function f (x) and given a starting point x1, the gradient of f (x) is
computed at x1, given by f ′(x1) where f ′(x) = d

dx f (x). The next point in the progression
is given by:

x(2) = x(1) − a f ′(x1) (2.14)

where a is the value for the learning rate. This it repeated iteratively until

|xn+1 − xn| < some value δ

where δ is a pre-set minimum step size cutoff value.
This algorithm can be generalised to multivariate functions of the form f (x1...xM).

This is done by updating every term x1...xM as shown in Equation 2.14 using the partial
derivative of f () with respect to each term, i.e. for all m in 1...m:

x(n+1)
m = x(n)m − a

d
dxm

f (x1...xm)

Now, the performance of any supervised machine learning model can be described
by defining a Cost Function over the expected output y of the model given by the train-
ing data and the actual output of the model ŷ, parameterised by the parameters of the
model. The cost function serves to quantify the distance of a model’s predictions from a
truth value. The objective of the learning algorithm is to modify the model parameters
such as to minimise the value of the cost function, i.e. to bring the predicted values as
close to the training values as possible. It is possible to define various cost functions. A
common cost function that is widely used is the Mean Square Error:

JMSE(~θ) = ∑
1
n
(ŷ− y)2 (2.15)

= ∑
1
n
(h(~θ)− y)2 (2.16)

where the vector ~θ gives the parameters of the models and h(~θ) is the prediction of
the model, also known as the Hypothesis Function.

The cross-entropy cost function is also commonly used when the hypothesis func-
tion takes the form of the sigmoid (logistic) function:

Jce(~θ) = −∑ [yln(ŷ) + (1− y)ln(1− ŷ)])

Gradient Descent is then commonly used to minimise the cost function with respect
to the parameters of the model~θ.
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Consider the neural network shown in Figure 2.17. This network consists of three
layers - an input layer of three neurons x1 . . . x3, a hidden layer of five neurons a1 . . . a5

and a single-neuron output layer. Let aj
i be the activation of neuron i in layer j and W j be

the matrix of weights controlling the mapping from layer j to layer j+1 such that wj
i,k is

the weight applied at neuron i in layer j + 1 to the input coming from neuron k in layer
j. By convention we define a bias unit x0 (or a0) in each layer, which always outputs a
value of 1. The weight associated with this bias unit, wj

i,0 will be equivalent to the bias
of neuron i in layer j. The function h(x) is referred to as the Hypothesis function - the
function governing the prediction of the neural network given the input vector x

Referring to the neural network in Figure 2.17, we can write:

a2
1 = g(w1

1,0x0 + w1
1,1x1 + w1

1,2x2 + w1
1,3x3)

a2
2 = g(w1

2,0x0 + w1
2,1x1 + w1

2,2x2 + w1
2,3x3)

... etc., where g(x) is the chosen activation function for the layer. Similarity, for layer 3:

a3
1 = g(w3

1,0a2
0 + w3

1,1a2
1 + w3

1,2a2
2 + w3

1,3a2
3 + w3

1,4a2
4)

Generalising and using vector notation we can write:

Aj = g(zj) = g(W jT Aj−1)

where g(x) is the activation function.
Generalising further, we can consider the hypothesis function of the entire network

to be a function of all the weights in the network, therefore if a suitable cost function is
used this can be minimised via gradient descent and in the process, the weights of the
network adjusted to optimise the predictive performance of the model.

In order to do this, however, the partial derivative of the cost function with respect to
all the weights of the network are needed. In order to calculate these partial derivatives,
an algorithm known as Back-propagation is used.

The back-propagation algorithm was developed in the 1960s by several researchers
independently of the context of neural networks (Schmidhuber, 2015) and it was applied
for the first time to neural networks by Werbos (1974).

In essence, the back-propagation algorithm involves several iterative steps (Mitchell,
1997):

1. Initialise network with random weights

2. Define a cost-function J(W) which returns an error value given the hypothesis
value h(x) and the expected value y.
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3. Apply training example to input neurons and forward-propagate the neuron acti-
vations to the output layer.

4. For every layer l in (L..1) where L is the number of layers, calculate the vector
error terms starting from the last layer:

δL = h(x)− (y) = aL − y

and
δl = ((wl)Tδl+1) ∗ g′(zj)

where g′(zj) is the derivative of the activation function applied to the weighted
sums of the inputs in layer j. This is the "back-propagation" part of the algorithm.

5. Calculate the partial derivatives of the cost function with respect to the weights
as:

∂J(w)

∂wl
i,j

= al
jδ

l+1
i

6. Repeat the above for all training examples, accumulating the partial derivatives
for each weight into a matrix ∆l

i,j

7. Optimise the weights using Gradient Descent (or other algorithm) using the aver-
age derivatives over all the samples:

∂J(w)

∂wl
i,j

=
1
m

∆l
i,j

The above steps are repeated until the loss of the neural network, i.e. the value of
the loss function, converges to within a pre-set threshold.

A neural network can be used for both classification tasks as well as regression tasks.
Classification involves predicting a class or label for a given input. There are, broadly

speaking, three types of classification tasks:

� Binary Classification. The network outputs a single True/False binary value de-
pending on the input. For example, a network might be trained to process a pic-
ture and output a value of 1 when the picture depicts a cat and 0 otherwise.

� Multi-class Classification. The network has multiple boolean outputs, each out-
put signifying a different condition. For example, a network might have two out-
puts, one of which is True when the input picture contains a cat and the other
being True when the input picture contains a dog.
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� Multi-class, multi-label Classification. In this configuration, the network is capa-
ble of recognising multiple conditions simultaneously. In keeping with the above
example, the network would be able to recognise when the input picture contains
multiple types of animals.

Regression tasks, on the other hand, involve the prediction outputting a continuous
value, rather than boolean ones. A neural network set up as a regressor might be used,
for example, to predict real-estate prices.

These different types of tasks require the use of different activation functions at the
output layer as well as different cost functions. Binary classifiers usually use the logistic
activation function in the output layer and the cross-entropy loss function. Regressors,
on the other hand, use the Mean Square Error as the cost function and a linear activation
function in the output layer. Note, however, that a neural network is not limited to using
a single activation function throughout the network, but different layers can be set up
with different activation functions(Mitchell, 1997).

2.5.3.2 | Application in USR Simialarity Matching

ANNs have been an extremely successful, general purpose, class of machine learning
algorithms that have found extensive use in such a wide variety of fields that a complete
review of their applications would be out of scope for this project. They have also, how-
ever, been extensively used within the field of virtual screening, for prospective as well
as retrospective studies and structure-based as well as ligand-based virtual screening
(Lavecchia, 2015; Lavecchia and Giovanni, 2013; Molnár and Keserű, 2002; Omata et al.,
2007; Selzer and Ertl, 2006; Winkler and Burden, 2002).

As part of our experiments, we have applied neural networks to the problem of
ranking USR descriptors by similarity. Our motivation for exploring this algorithm was
that, in contrast to the previous two algorithms, ANNs are supervised models, requiring
both positive and negative examples during training. In selecting such an algorithm, we
could compare the similarity matching performance of a ubiquitous 2-class supervised
model with that of our two other chosen 1-class models.

Note, however, that in a real-world, prospective scenario, the scope for using ANNs
in a virtual screening application would be dictated by the number, and quality of nega-
tive training examples that are available. The previous 1-class models that we explored
would have no such limitation.

We initially set up feed-forward neural networks in regression-mode, with a single
hidden layer using the RelU activation function with 100 neurons and a single output
neuron using the Mean Square Error cost function. These were parameters, obtained
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empirically by preliminary experiments on reduced-size datasets based on our available
data.

During the course of our experiments we expected models trained on full conform-
ers to achieve better results than corresponding models trained on LECs. In contrast to
the previous two models, however, we failed to observe this behaviour in our ANNs.
In view of this, we subsequently re-trained alternative ANN models using 500-node
hidden layers in order to determine if the mode complex networks could achieve better
predictive performance for full conformer models. More details regarding this can be
found in Section 4.2.3.

It is essential to point out that the network topologies we chose for this project are
only a reasonable starting point determined by preliminary exploration of the available
data. Given enough time and processing resources, the ideal scenario would have been
to more fully explore the hyper-parameter space for these models, varying the topol-
ogy of the network so as to find the better-performing configurations. In particular, we
would have liked to perform tuning of the networks with respect to cost function and
activation functions, as well as the number of hidden layers and their size and other
hyper-parameters that are available in the model. The aim of this project, however, was
to determine if USR descriptors were amenable to be successfully modelled by using
machine learning algorithms. The fine tuning of such models to achieve the best pos-
sible performance must necessarily be left to future work, due to the inherent time and
resource constraints that we had to abide by.

2.6 | Evaluation Criteria
Within the Ligand-Based Virtual Screening literature two main evaluation criteria are
commonly used: Receiver Operator Characteristic (ROC) Curves/Area Under Curve
(AUC) and Enrichment Factor (EF).

ROC Curves are a method of measuring the performance of a machine learning
model. In general, a classification model will output a positive or a negative result by
first calculating some continuous value and then deciding upon the positive/negative
output by applying some threshold. The choice of such threshold will determine which
values of the output will be considered positive and which negative.

Now if we define the True Positive Rate (TPR) as the fraction of positive test in-
stances predicted correctly to be positive and the False Positive Rate (FPR) as the frac-
tion of negative test instances predicted wrongly to be positive, we can plot the TPR vs.
the FPR as a function of the threshold. An example ROC Curve generated as part of this
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Figure 2.18: Example ROC Curve.

research project can be seen in Figure 2.18.

For a totally random classifier, the curve will be a diagonal line with origin at (0,0)
and unit gradient. A graph curving above this line indicates a good (above random)
classifier and one below this line signifies a bad (below random) classifier. Note that
inverting the label of a bad classifier will turn it into a good classifier. Consequently,
the greater the area under the ROC curve, the better the classifier and the AUC metric
is used to characterise the power of classification model.

In the context of similarity ranking in USR-like methods, producing ROC curves
involves treating each of the N actives A0..N as a template molecule, calculating its simi-
larity with every other molecule in the dataset. This produces N lists, L0..N of similarity
scores corresponding to each of the N active templates. There are then two ways of
producing ROC curves from these lists, as described in Armstrong et al. (2010).

One way is to use the similarity scores themselves together with the truth labels to
generate the curve by varying the similarity threshold, i.e. the similarity threshold is
swept through values between 1 and 0, at each step counting the true positives and
false positives found at that similarity level.

The second way is to use the rank of the ordered molecules within each list Li as the
threshold quantity. In this case the rank threshold starts from 0 and is incrementally
increased, counting the true and false positives at each step, until all the molecules are
accounted for. In our work we generate both types of ROC curves so as to compare
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results.

Armstrong et al. (Armstrong et al., 2010) point out that, in general, it is not possible
to predict a priori whether one particular VS method will produce better similarity ROC
curves or rank ROC curves, however they point out that ElectroShape methods tend to
produce better scores with rank ROC curves.

Note that these procedures are valid when performing traditional, non-machine
learning, retrospective virtual screening evaluations. When using machine-learning
models, however, in general, the similarity scores for the molecules under test are gen-
erated against a learnt statistical model incorporating information from all the active
molecules as an ensemble. It is therefore not possible to make a distinction between
similarity ROC and rank ROC in this case, because separate similarity lists for each ac-
tive are not obtainable. When evaluating ML models, therefore, it is only possible to
calculate ROC curves based on the output quantity of the respective model, it being a
similarity score, probability score or similar.

The Enrichment Factor is a measure used specifically in retrospective LBVS studies,
such as those we perform in this dissertation. The Enrichment Factor at a given percent-
age of a dataset is defined as the ratio of the fraction of actives correctly found within the
first x% of the ranked dataset to the fraction of actives that would be found by chance.
More formally:

EFi,j,x% =
ai,j,x%/cx%

ai,j,100%/c100%

where EF1,j,x% is the enrichment factor at x% for active j in target i, ai,j,x% is the
number of actives found in the top x% of the sorted dataset for active j in target i and
ci,j,x% is the total number of compounds in x% of the dataset.

Summing this formula over the actives we obtain the average enrichment factor for a
given target and summing again over all the targets gives the average enrichment factor
for the method.

The difference between these two evaluation criteria is that while ROC Curves/AUC
gives a picture of the performance of the method across the entire dataset, the EF em-
phasises the Early enrichment, i.e. the performance of the model in detecting actives at
the top ranking positions. This makes sense in the context of virtual screening, where
only the top-ranked compounds will go ahead to be physically tested in the laboratory.
The limitation in the use of EF is that it is not comparable between studies using differ-
ent compound databases because it depends on the active/compound ratio present in
the dataset. This means that while EF gives a useful metric for comparing models within
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the same study, using the same dataset of compounds sampled in a similar manner, the
ROC/AUC metric is more suited when comparing results from different studies.

2.7 | Related Work
As discussed in the previous sections, there has been relatively intense development
related to the technique of USR, with several researchers iteratively improving its per-
formance by augmenting the basic technique with more information. In spite of this,
however, to date there has not been a study that applied machine learning concepts to
USR and USR-related descriptors.

Machine learning, has however, been applied extensively to all branches of Virtual
Screening, including SBVS, as well as fingerprint-based LBVS.

In the area of SBVS, the focus is on the development of scoring functions for dock-
ing based on machine learning. Docking is the process of computationally matching
a molecule to a protein binding pocket as described in Section 2.1. Machine learning
techniques applied to docking scoring functions have proven to yield much better re-
sults than classical, non-ML scoring functions (Ain et al., 2015) One of the more recent
examples of this is Wójcikowski et al. (2017) where the authors develop a new machine
learning-based scoring function based on the Random Forest algorithm which outper-
forms classical scoring functions.

Artificial Neural Networks have also been used extensively in virtual screening. In
Betzi et al. (2006), an ANN was trained using a combination of several classical scoring
functions and was shown to yield superior results than a linear combination of the same
scoring functions. In Pereira et al. (2016), DeepVS, a deep learning approach to docking
is proposed which automatically learns the relevant features from ligand-protein com-
plexes and, being evaluated using the Directory of Useful Decoys (DUD), obtained the
best docking score to date in terms of ROC AUC.

In the realm of LBVS, the molecular fingerprints generated by 2D similarity fin-
gerprinting techniques can easily act as training features for machine learning models
(Lavecchia, 2015). Several classes of features can be used as training data for machine
learning models. Machine learning methods have been applied successfully to 2D de-
scriptors in a large number of studies (Geppert et al., 2010; Lavecchia, 2015; Stahura and
Bajorath, 2004). As an example, in Chen et al. (2007) the authors apply kernel discrim-
ination and naive Bayesian classifier methods to a variety of 2D descriptors, managing
to enrich the top 1% with up to 90% of the dataset actives, demonstrating the effective-
ness of such methods with a particular focus on the method performance on reduced
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training sets.
In Warmuth et al. (2003) the Support Vector Machine (SVM) algorithm is used in con-

junction with active learning, wherein an iterative approach to training the ML model
is taken, using the actives identified from previous iterations as new training data for
subsequent ones.

Hert et al. (2006) explores the use of data fusion and machine learning techniques to
enhance the performance of similarity searching of molecules when multiple reference
structures are available. This is in contrast to traditional ligand-based screening where
only one reference structure at a time is used. In addition to this, the authors propose
turbo similarity searching as an alternative when only one reference structure is avail-
able. Using this method, machine learning models are trained using the known active,
as well as other similar molecules as active training examples. The authors show that
using this idea, significant improvements in performance are achieved.

In Kurczab et al. (2011) 60 different machine learning methods from the WEKA data
mining software (Hall et al., 2009) are applied to various types of fingerprints and train-
ing set sizes, concluding that there is no method that consistently outperforms every
other one, however there are methods that universally produce consistently good per-
formance.

When it comes to Molecular Shape Comparison (MSC) LBVS techniques, there has
been much less research in the application of machine learning techniques than there
has been for fingerprint techniques. It is a known fact that fingerprint techniques yield
a higher number of hits than 3D structural approaches (Venkatraman et al., 2010) and
therefore it is not surprising that a large effort has gone into improving the methods that
are known to work best.

It is also realised, however, that the inability of shape-based LBVS to perform as
well as 2D approaches stems from the fact that in traditional approaches only one con-
former at a time can be taken as a template molecule for the similarity search (Venka-
traman et al., 2010). This makes it difficult or impossible to detect deeper patterns that
would be evident if multiple conformers could be considered en-bloc. This possibility
of achieving just that, however, exists in the application of machine-learning methods
which, in general, take examples of valid data points and generalise them so as to ex-
tract statistically significant patterns against which new, unclassified data points can be
compared.

Jahn et al. (2010, 2011) remark on this point and in their research propose a method
of generalising the entire conformer-space of a molecule in terms of Gaussian Mixture
Models. This is done by sampling the pairwise atom-distance distribution for flexible
atom pairs, i.e atoms connected by one or more rotatable bonds in the molecular graph,
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and from these train a GMM for each flexible atom pair. These pre-processing steps are
carried out for every molecule in the database. Molecule similarity is then calculated
using an overlap metric between GMMs in order to quantify the similarity between the
Gaussians in each GMM, and hence between the pairs of GMMs. The authors report
significant performance improvements compared to 15 different 2D and 3D methods
including USR over which an average performance increase of 4 times was achieved in
terms of EF1%.

A more conventional application of machine learning was proposed in Sato et al.
(2012) wherein the authors applied SVM-based models to Molecular Shape Overlays. In
their paper, the authors point out that applying machine learning techniques to 3D LBVS
methods is not as straightforward as doing so for 2D techniques because 3D methods
do not generally result in descriptors or features suited to the task. Due to this, the
authors develop Molecular Shape Overlays, a novel technique in which the molecules
in their compound database are superimposed on all the available actives for a given
target using ROCS so that a similarity profile for the molecules can be calculated. These
profiles, in the form of vectors of features were then used to train the SVM.

Support Vector Machines are a powerful class of supervised models that are capable
of discovering non-linear separation boundaries between labelled data points (Cortes
and Vapnik, 1995). The power of SVMs is the ability of using custom Kernel functions
to encode similarity between different types of data points. Due to this flexibility, SVMs
have found wide-ranging use in a plethora of domains where machine learning is ap-
plied such as text classification (Pradhan et al., 2004), image classification (Barghout,
2015) and optical character recognition (Decoste and Schölkopf, 2002).

A variety of custom kernel functions specific to virtual screening have been devel-
oped for use with SVMs (Lavecchia, 2015), including a Pharmacophore kernel (Mahé
et al., 2006) which enables SVM classification to be performed based on pharmacophore-
based similarity. Pharmacophores are groups of atoms in a molecule that have an active
role when binding to a target protein. The discovery of pharmacophores has an impor-
tant role in the determination of Structure-Activity Relationships (SAR) - the relation-
ship between chemical structures and specific biological activity.

A variety of neural network called Self-Organising Map (SOM) was applied in Selzer
and Ertl (2005) in order to identify ligands to the G-Protein-Coupled Receptor (GPCR)
protein target using the Radial Distribution Function (RDF) to generate training data
from 3-D conformers. The RDF is based on a histogram of atomic distances and atomic
properties such as partial charge. SOMs are a type of neural network in which neurons
are connected in a grid pattern and are trained so that similar inputs are mapped to
adjacent neurons. They are generally used for clustering and for visualisation purposes.
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Clustering actives for a class of proteins called G protein-coupled receptors (GPCRs)
using a SOM, the model managed to identify 71% of the GPCR ligands in a data set of
which only 5.9% were actives

As stated previously, there is much work still to be carried out when it comes to the
application of machine learning to the field of shape-based similarity searching in LBVS.
The USR family of methods, however, are singularly well-suited to such a treatment, by
virtue of their use of numeric descriptor vectors, similar in structure to those produced
in 2D methods. These descriptors are easy to use unchanged as training instances for
machine learning models and doing so affords the advantage of combining the infor-
mation inherent in the descriptors for all the actives into a single, comprehensive search
which has a greater likelihood of identifying significant patterns than the traditional
method of searching compound databases one active at a time.

2.8 | Summary
In this chapter we have given a comprehensive overview of the field of Virtual Screen-
ing and related concepts. We have discussed the different types of Virtual Screening
techniques with particular reference to Molecular Shape Comparison in Ligand-Based
Virtual Screening.

We have then given the history of the USR technique and the related family of meth-
ods, detailing the concepts inherent in the methods and going into detail with the spe-
cific techniques that we have used in the course of this project.

We then discussed concepts relating to conformer generation which is a necessary
step in data pre-processing for shape-based virtual screening techniques, following which
we gave detailed overviews of the three machine learning methods we have explored
in the dissertation as well as the metrics we used to evaluate our methods.

The chapter then concludes with an overview of the literature related to our project.
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3

Methodology

This chapter details the methods and processes employed to achieve the stated aims
and objectives. The knowledge presented in the Background and Literature Overview
chapter forms the foundation for the work presented in this chapter.

3.1 | Approach Overview
The implementation of the project is broadly divided into several major functional parts
as detailed below. An overview of our approach can be seen in Figure 3.1.

� Conformer Generation. This process takes the DUD-E SMILES molecule datasets
and generates the necessary number of conformers for every molecule, saving
them to file for use by subsequent tasks.

� Descriptor Generation. This process takes the conformers generated in the pre-
vious process and uses them to generate corresponding descriptors for USR, CSR,
ElectroShape-4D (ES4D) and ES5D.

� Standard USR, CSR, ElectroShape-4D and ElectroShape-5D Algorithms. This
process implements the USR family of algorithms as specified by Ballester and
Armstrong in Ballester (2011), Armstrong et al. (2009), Armstrong et al. (2010) and
Armstrong et al. (2011) in order to be able to generate baseline performance scores
to which we can then compare the performance scores obtained by our machine-
learning models.

� Machine learning model building, tuning and evaluation. This task is the im-
plementation of a model selection, tuning and evaluation pipeline for training the
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Figure 3.1: This schematic represents the major functional blocks comprising our ap-
proach to meeting the objectives stated in Section 1.4. Molecule entries from DUD-E
are processed by the conformer generation module which expands the molecule defi-
nitions into individual conformers. These conformers are then used to generate USR,
CSR, ES4D and ES5D descriptors. The descriptors are then used in our implementation
of these algorithms to generate baseline performance metrics. The same descriptors are
then also used to construct, tune, train and evaluate Machine-Learning models based
on Gaussian Mixture Models, Artificial Neural Networks and Isolation Forests. These
models are constructed and evaluated over several fractions of the entire dataset in or-
der to gauge how well the models adapt to decreasing dataset size.

machine learning algorithms that we determined to be suitable for modelling the
problem of similarity searching based on USR descriptors. In this project, we ex-
plore the use of Gaussian Mixture Models, Aritifical Neural Networks and Isola-
tion Forests. Using the tuned and trained models we generate performance scores
on the same target proteins as the previous step. One of the aims of this research
project is to determine how the performance of machine learning algorithms ap-
plied to USR similarity searching degrade with decreasing training dataset size.
These experiments are performed by systematically selecting decreasing-size sub-
sets of the available training data and producing separate evaluation results for
each subset.

All development was done in Python 3.6 and all processes were run on Ubuntu 18.04
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Figure 3.2: Conformer generation overview

instances. The following sections describe every functional block in more detail.

3.2 | Conformer Generation
We implemented two versions of the conformer generation process. One version was
designed to run on a single machine, parallelising the load among the available cores
(genConformersParallel.py) and the other was designed to make use of the Spark plat-
form so as to be scalable over multiple clustered machines (genConformersSpark.py).
The conformers used in this project were generated using the Spark version of the code.

A data-flow diagram depicting the Conformer Generation process can be seen in
Figure 3.2.

For the purposes of this research project, all Cheminformatics-related processing
was performed using the 2018.09.1 version of the RDKit library, a widely-used open-
source Cheminformatics library (Landrum and Others, 2013). RDKit is written natively
in C++, however also has Python bindings, allowing it to be easily used from Python.

The input datasets to the conformer generation process are *.ism files downloaded
from DUD-E. For every target protein, DUD-E provides two datasets - actives_fi-

nal.ism and decoys_final.ism. Each .ism file contains a list of molecule definitions
specified in the standard SMILES format (Weininger, 1988), one molecule per line to-
gether with the ChEMBL code for each molecule. ChEMBL is "... a manually curated
database of bioactive molecules with drug-like properties", maintained by the European Molec-
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Target Description Active
Mols.

Decoy
Mols.

Active
Confs.

Decoy
Confs.

Confs./mol
(Actives)

Confs./mol
(Decoys)

ACE Angiotensin-converting enzyme 282 16,900 31,947 1,266,730 113 74
ACES Acetylcholinesterase 453 26,250 55,549 2,153,887 122 82
ADA Adenosine deaminase 93 5,450 7,786 332,177 83 60
ALDR Aldose reductase 159 9,000 4,797 375,355 30 41
AMPC Beta-lactamase 48 2,850 1,351 99,431 28 34
ANDR Androgen Receptor 269 14,350 12,068 543,761 44 37
CDK2 Cyclin-dependent kinase 2 474 27,850 21,273 1,371,687 44 49
COMT Catechol O-methyltransferase 41 3,850 1,262 147,125 30 38
DYR Dihydrofolate reductase 231 17,200 16,679 873,009 72 50
EGFR Epidermal growth factor receptor erbB1 542 35,050 41,580 2,405,525 76 68
ESR1 Estrogen receptor alpha 383 20,685 21,024 1,212,349 54 58
FA10 Coagulation factor X 537 28,325 38,757 2,087,845 72 73
FGFR1 Fibroblast growth factor receptor 1 139 8,700 9,232 535,529 66 61
GCR Glucocorticoid receptor 258 15,000 12,111 652,595 46 43

HIVPR Human immunodeficiency virus type 1
protease 536 35,750 67,552 3,436,686 126 96

HIVRT Human immunodeficiency virus type 1
reverse transcriptase 338 18,891 16,576 836,334 49 44

HMDH HMG-CoA reductase 170 8,750 22,037 827,459 129 94
HS90A Heat shock protein HSP 90-alpha 88 4,850 4,918 235,367 55 48
INHA Enoyl-[acyl-carrier-protein] reductase 43 2,300 3,900 118,362 90 51
KITH Thymidine kinase 57 2,850 3,168 150,295 55 52
MCR Mineralocorticoid receptor 94 5,150 3,960 215,697 42 41
MK14 MAP kinase p38 alpha 578 35,850 34,310 2,096,198 59 58
NRAM Neuraminidase 98 6,200 6,030 325,337 61 52
PARP1 Poly [ADP-ribose] polymerase-1 508 30,050 18,925 1,242,760 37 41
PDE5A Phosphodiesterase 5A 398 27,550 32,657 1,876,746 82 68
PGH1 Cyclooxygenase-1 195 10,800 8,123 410,263 41 37
PGH2 Cyclooxygenase-2 435 23,150 19,598 960,837 45 41
PNPH Purine nucleoside phosphorylase 103 6,950 3,277 284,801 31 40

PPARG Peroxisome proliferator-activated
receptor gamma 484 25,300 71,166 2,527,881 147 99

PRGR Progesterone receptor 293 15,650 13,041 578,492 44 36
PUR2 GAR transformylase 50 2,700 7,931 195,987 158 72
PYGM Muscle glycogen phosphorylase 77 3,950 3,300 212,652 42 53
RXRA Retinoid X receptor alpha 131 6,950 8,008 316,919 61 45
SAHH Adenosylhomocysteinase 63 3,450 1,883 118,691 29 34
SRC Tyrosine-protein kinase SRC 524 34,500 39,561 2,313,655 75 67
THRB Thrombin 461 27,004 57,028 2,131,048 123 78
TRY1 Trypsin I 449 25,980 47,961 1,933,063 106 74

VGFR2 Vascular endothelial growth factor
receptor 2 409 24,950 25,349 1,518,622 61 60

Table 3.1: The list of 38 protein targets that we considered in the course of the project
along with the number of active and decoy molecules that were available for each pro-
tein target and the respective number of active and decoy conformers that we generated
for each target. These targets correspond to the "Dud38" subset in DUD-E.

ular Biology Laboratory (EMBL) (Gaulton et al., 2012).

For reasons of resource availability, we considered a subset of the protein targets in
DUD-E for this research project. The subset of proteins that we chose is shown in Ta-
ble 3.1 and consists of the molecules also present in DUD. This was done because most
USR-related research papers we considered used DUD for evaluation purposes. Choos-
ing the same molecules allowed us to directly compare (i) the performance obtained by
the USR family of methods when applied to DUD-E as opposed to DUD and (ii) the
performance of machine learning methods compared to the non-machine learning USR
algorithms.
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Each SMILES definition in the input .ism files is passed through standardisation
functions provided by RDKit. These functions, previously provided by the independent
MolVS project1 and now integrated into RDKit, perform sanitisation procedures on the
molecule, checking for problems in the definition and fixing them, yielding a standard-
ised SMILES string. The reason for which we perform this standardisation step is that,
using SMILES, it is possible to specify the same molecule in several different ways. For
example Hydrogen molecules may be included or omitted, charges may be included
or omitted, aromatic rings may be broken in different places, etc. There are also other
conditions that can cause confusion. For example tautomers are isomers of a compound
that differ from each other only in the positioning of their Hydrogen atoms. Different
tautomers give rise to different SMILES strings, but chemically, they readily convert
between each other, therefore they are usually regarded to be the same chemical com-
pound. The standardisation functions provided by RDKit take a large number of special
cases such as the above into account and ensure that any SMILES string representing a
given compound is converted to a canonical form that is invariant for that compound.
All further operations are performed on the standardised molecules.

During the implementation of this module, we discovered an issue in RDKit which
was causing it to hang when generating conformers for some molecules that had been
standardised, while this did not happen for the same molecules when we ommitted the
standardisation step. We contacted the RDKit maintainers who confirmed that it was a
new bug related to the way RDKit interprets SMILES strings when performing a round-
trip conversion from SMILES to the internal RDKit molecule representation and back
to SMILES. We have reported this issue in the RDKit issue tracker2, however it has not
been fixed in time for the completion of this project. This resulted in a failure generating
conformers for a small number of molecules from each protein target as seen in table....
This problem, however was not severe enough to alter our results.

As discussed in Section 2.3, the number of conformers to generate in order to ade-
quately sample a molecule’s conformational space is dependent on the number of ro-
tatable bonds present in the structure of the molecule. For each of the input molecules,
therefore, we use RDKit to determine the number of rotatable bonds and based on this,
we compute the number of conformers n needed. Ebejer et al. propose a protocol for
conformer generation with RDKit in Ebejer et al. (2012). Their publication has been
widely cited and the procedure has been used in a variety of contexts, eg. Gerhardt
et al. (2017) and Li et al. (2016). We therefore followed Ebejer at al.’s guidelines as fol-
lows:

1https://github.com/mcs07/MolVS [Last Accessed 5 May 2019]
2https://github.com/rdkit/rdkit/issues/2169 [Last Accessed 26th May 2019]
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n =


50, if nrot <= 7,

200, if nrot <= 12,

300, otherwise.

where nrot represents the number of rotatable bonds in the molecule.
Conformer generation is performed using open-source code by Steven Kearnes3

which we modified in two ways:

� Use of ETKDG. We modified the code to use Experimental-Torsion Knowledge
Distance Geometry (ETKDG) as the conformer generation algorithm. As described
in Section 2.3, ETKDG is a newer stochastic conformer generation method which
builds upon the existing Distance Geometry (DG) algorithm by using experimen-
tal knowledge about preferential torsional-angles and "prior" basic knowledge
about molecular structure. The major advantage in using ETKDG as opposed
to DG is that the output of DG is not optimal and the resulting conformers can
be generated in a distorted state (e.g. aromatic rings not flat, torsional angles
not conforming to experimental values). In order to remedy this, a second en-

ergy minimisation step is usually performed on these conformers in which inter-
atomic force-field calculations are used to relax the molecule into a stable, energy-
minimised state. This computationally expensive step is avoided by ETKDG as
the embedded knowledge in the algorithm produces conformers that are already
energy-minimised. We considered the upgrade of the existing code to use ETKDG
as a desirable change to make for the above reasons.

� Maximum energy cutoff. In order to align our conformer generation process with
Ebejer et al. (2012), we added a maximum energy cutoff value of 5 kJ/mol such
that any conformer that has a total energy above this value is discarded. This is
important because excessively high-energy molecules are unstable and unlikely to
occur naturally.

Unfortunately, the ETKDG algorithm does not enable the computation of energy
values for conformers. This means that it is necessary to use a forefield calculation to
determine the energy for every conformer. This implies that energy minimisation based
on the forefield has to be performed anyway before the energy calculation, notwith-
standing the use of ETKDG. This is because the parameters used by the forefield will
be different from those used by ETKDG and therefore energy calculations derived from

3https://github.com/pandegroup/vs-utils [Last Accessed 4 May 2019]
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ETKDG-generated conformers based on the different forefield would generate wrong
results. It is nevertheless, still advantageous to use ETKDG because the conformers
generated will be closer to the energy minima than those generated by DG and there-
fore the energy minimisations step will be faster.

There are two basic steps that occur during conformer generation:

1. Conformer generation. The first step is the generation of a set number of con-
formers, depending on the number of rotatable bonds as discussed above, using
the conformer generation method that was chosen - ETKDG in our case. This re-
sults in an unsorted list of randomly generated conformers.

2. Conformer Similarity Pruning. In this step, the conformers that are generated
above are processed so as to eliminate similar ones. The similarity between con-
formers here is quantified using the Root-Mean-Square Deviation (RMSD). The
RMSD is defined as the average root-mean-square distance between correspond-
ing atoms in the two conformers being compared:

RMSD =

√√√√ 1
N

N

∑
i=1

δ2
i

where δi is the distance between the ith atoms of the two molecules and N is the
number of molecules. Conformers having energies above a set threshold are also
removed. This process is illustrated in Figure 3.3. This process is in-line with that
suggested in Ebejer et al. (2012)

3. Conformer Energy Cutoff. The remaining conformers after pruning are then
sorted by increasing energy ensuring that the first conformer is the LEC

When the process is complete, the conformer generator then embeds the generated
conformers into the Molecule object and returns it to the caller. The returned conformers
are then written to file in the standard .sdf format (Dalby et al., 1992).

3.3 | Descriptor Generation
We have provided custom implementations for generation of descriptors for a selection
of USR family of algorithms as follows:

� USR

� CSR

59



Chapter 3. Methodology 3.3. Descriptor Generation

Figure 3.3: This flowchart illustrates the conformer pruning algorithm that we used in
our conformer generation process. Conformers generated by ETKDG are first sorted by
their energies. The Lowest Energy Conformer is always kept. Any conformer with a
RMSD value against any other kept conformer is discarded. Any conformers with an
energy exceeding the LEC by a set threshold are also discarded.
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� ES4D (RDKit-based implementation)

� ES5D (RDKit-based implementation)

In contrast to USR and CSR which are based exclusively on spatial information, ES4D
and ES5D incorporate physicochemical information into the descriptor, therefore in
these cases RDKit was needed to calculate the relevant values. ES4D incorporates the
atomic partial charges and we extracted these using the getMMFFPartialCharge() func-
tion. ES5D along with partial charges, also makes use of ALogP values which we ex-
tracted using the RDKit _CalcCrippenContribs() function from the Crippen.rdMolDes-
criptors class.

Note that, while conformer generation and descriptor generation are conceptually
different processes, in the interest of efficiency we have combined them into a single
Python process that generates both conformers and corresponding descriptors in a sin-
gle run. Note also, that since ES5D is the highest scoring method among the four we
implemented (USR, CSR, ES4D and ES5D) and in the interest of optimal resource utili-
sation, we chose to use only USR and ES5D in our machine learning experiments going
forward.

The conformer and descriptor generation processes generated in excess of 300GB of
data.

3.4 | Evaluation of Standard USR Family of Methods
In order to serve as a baseline performance measure against which to compare the per-
formance of our machine learning algorithms, we have implemented our own version
of the USR algorithm, using it to generate performance metrics for similarity searches
on the DUD-E dataset for USRand ES5D descriptors.

Our version of the USR algorithm is distributed in nature, making use of the Spark
platform to scale to the available number of machine instances.

A data-flow diagram depicting the USR Virtual Screening process is shown in Fig-
ure 3.4. This process is implemented by the class USRMoleculeSim in USRRun.py

As can be seen from the diagram, the process starts by concatenating the descriptors
of the conformers of the na active molecules. The descriptors for the active conformers
are broadcast to the Spark workers so that they can be accessed from the entire clus-
ter. The conformer descriptors for the nc candidate molecules for the search are then
parallelised in Spark, creating a Resilient Distributed Dataset (RDD). The conformer
similarity function USRMoleculeSim.doSim() is then mapped onto the conformer RDD,
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Figure 3.4: An illustration of the Spark-based implementation of the USR similarity
evaluation process.

resulting in the similarity function being called once for every search molecule while
being passed the molecule’s conformer descriptors.

The similarity function is required to return a maximum similarity value for each
search conformer with respect to the conformers of each active molecule. This could
be done by iterating over each conformer of each active molecule and each search con-
former and calculating the similarity value individually, however this would result in
an exceedingly slow implementation in Python.

Instead of this naïve approach, we optimise the process by leveraging the fast native
mathematical matrix operations provided by the NumPy library. We do this by using the
NumPy repeat() and tile() functions to generate, for each active molecule, expanded
active conformer and search conformer matrices in such a way that when combined in
a row-wise manner, the two matrices results in the Cartesian product of the nac active
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Figure 3.5: Matrix-based maximum similarity calculation between search conformers
and active conformers.

conformer descriptors and the nsc search conformer descriptors. The Manhattan dis-
tance can then be calculated in a row-wise manner between these two matrices giving a
a nac× ncc-size matrix of similarity scores. The function then, for each active molecule,
selects the maximum similarity score over the candidate conformers, resulting in one na-
size vector containing the maximum similarity score of the search molecule per active
molecule. This process is illustrated in Figure 3.5.

As per the Spark map operation, the above process is performed once for every
search molecule, ultimately returning a na × nc matrix of similarity scores, with one
maximum similarity score per search molecule per active.

This matrix is then used to calculate

� Mean Enrichment Factor at 1% and 5%. This is the mean of the Enrichment Factor
calculated over the active templates.

� The similarity-based ROC curve and corresponding AUC

� The rank-based ROC curve and corresponding AUC

as described in Section 2.6.
At a later stage, we converted this code to run independently of Spark, using the

Python mupltiprocessing package to distribute processing among the available pro-
cessors using a map paradigm similar to that we used in Spark. This was because later
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Figure 3.6: The "SEPARATE" record format is used when conformer descriptors belonging
to different molecules need to be kept separate from each other when loading them into
memory. Each molecule is represented by a record. The first field of each molecule
records contains an array holding all the conformers of the molecule.

on during the project, new hardware was made available that had enough processors
not to necessitate the use of a cluster.

3.5 | Dataset Loading and Partitioning
We have implemented custom dataset loading and partitioning code to deal with the
USR family of methods descriptor files created by the conformation generation step in
Section 3.2. We chose to do this because the input data records (the molecule descrip-
tors) consist themselves of multiple records (the conformers for each molecule) and this
format of data was not well handled by the standard Python machine learning libraries.
The conformer_utils.py Python module contains our custom dataset loading and par-
titioning library.

The loadDescriptors() function is used to load the conformer descriptors from the
files pre-generated in the descriptor generation process. This function takes several
parameters to tailor which data files are loaded and how the data is returned. These
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parameters are the following:

� num_actives: the number of actives to load. If <= 1 it is taken as a percentage of
the total number of actives

� active_decoy_ratio: The number of decoys to load as a fraction of the number
of actives. -1 to maintain the population ratio of decoys to actives

� dtype: The descriptor type ("usr", "csr", "esh", "es5")

� selection_policy: "SEQUENTIAL" - returns molecules in the order in which they
appear in the dataset, "RANDOM": returns molecules in random order.

� return_type: "SEPARATE" - conformers for each molecule are returned as separate
DataFrames, "LUMPED" - all the molecule’s conformers are returned lumped in a
single DataFrame.

� exclusion_list: A list of files to exclude from the loading. This is used during
partitioning of the dataset to ensure that no overlaps occur with previously loaded
portions of the data when loading subsequent portions.

The "LUMPED" and "SEPARATE" return types are used as needed in varying situations,
depending on which format is most convenient. While the "LUMPED" format is simple,
consisting of a single DataFrame with one conformer per line, the "SEPARATE" is slightly
more complex and is illustrated in Figure. 3.6.

The conformer_utils.py module also supplies the following functions:

� split(): Split a record set into n folds using either "SEQUENTIAL" or "RANDOM"
policy, returning separate record sets for each fold. This is used for n-fold cross-
validation.

� lumpRecords(): Converts a "SEPARATE" format record set into a "LUMPED" format
record set

� joinDataframes(): joins multiple "SEPARATE" format record sets into a single record
set.

3.6 | Machine Learning Experiments
In general, in order to train and evaluate a machine learning model, the available dataset
has to be partitioned into a training dataset and a testing dataset. The model is trained

65



Chapter 3. Methodology 3.6. Machine Learning Experiments

on the training dataset and evaluated on the testing dataset. The result of the evaluation
serves to guide the tuning of the model’s hyperparameter values and the process of
model training and evaluation is repeated until the optimum hyperparameter values
are determined.

It is important that the performance metrics for model evaluation are taken on un-
seen data, i.e. a dataset disjoint from the testing dataset. This ensures that the result-
ing model does not exhibit high variance. A model with high variance implies that the
model predictions model too closely the training data and do not generalise well to un-
seen data. This requirement, however implies that not all the available dataset is used
in the training of the model, as a portion must be reserved for evaluation. This is clearly
not ideal.

N-Fold cross-validation is an algorithm that enables all the available data to be used
in the training of the model. N-fold cross validation is performed by partitioning the
dataset set into N folds. Each fold is then used in turn as a test set, while the rest of the
dataset is used as a training set. At every iteration, a different fold is used as the test
set and evaluation criteria are calculated. At the end of the N iterations the mean and
standard deviation of the given evaluation criterion can be determined from the results
of the N iterations. This process reduces variability in the result and also ensures that
all the available data contributes to evaluation of the model. This would not be the case
if the available dataset had to be simply split into test set and training set and the model
evaluation performed only once as explained above.

In all our machine learning experiments, we have adhered to a common dataset
handling and cross validation scheme.For every machine learning experiment that we
carried out, 20% of the molecules were loaded as a hold-out set and the rest were loaded
in "SEPARATE" mode as a validation set. Using the validation set, we carried out 5-fold
cross validation in order to determine the optimum hyperparameter values for the ma-
chine learning algorithm being considered in the given experiment.

Once the optimum hyper-parameters are determined, the 80% of the dataset not
allocated to the hold-out set is reloaded in "LUMPED" mode and used to train a final ver-
sion of the model using the optimum hyper-parameters. This model is then evaluated
against the hold-out set and a final set of performance values is calculated and saved.
An activity diagram illustrating this process is shown in Figure 3.7.

The decision to implement a 20/80 split in our datasets was an arbitrary one, which,
however is a common one used in machine learning model training scenarios (Alqah-
tani and Whyte, 2016; Shahin et al., 2004). Training/validation dataset split can be a
sensitive parameter when dealing with small datasets because high variance can re-
sult if the training dataset is too small with not enough examples to train a generalised
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Figure 3.7: Flowchart illustrating the pipeline we used to train and evaluate models in
our machine learning experiments.
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model. In our case, however, our datasets are large and therefore performance will not
be as sensitive to the split ratio.

As discussed in previous chapters, we have chosen three machine learning models
to explore within this research project - Gaussian Mixture Models, Artificial Neural Net-
works and Isolation Forest. In the following subsections the implementation details for
each of these algorithms are discussed.

3.6.1 | Gaussian Mixture Models
In our GMM implementation, we have used the sklearn.mixture.GaussianMixture

class in the Python Scikit-learn library. The only hyperparameter that was tuned for the
purposes of this research was the number of components, which was varied between
the values of 1, 10, 50, 100 and 1000. The covariance type was always set to "full" as this
is known to yield the best fit to the input data, albeit at the cost of some performance.

The GMM is trained exclusively on active molecule conformers. The candidate
molecules are then ranked using the score() method provided by the GaussianMixture

class. The score method takes a set of input records and returns their average log-
likelihood with respect to the trained GMM. This is a measure of how well the GMM
represents the input data and so can be taken as a measure of similarity.

The candidate molecules are finally ordered by their score, giving a similarity-based
ranking that is then used to calculate the Enrichment Factor as well as generate similarity-
based and rank-based ROC curves, all of which are saved to file.

As a further experiment with GMMs we implemented a scheme inspired by Jahn
et al. (2010) and Jahn et al. (2011). Here, the authors used GMMs to encode bond rota-
tion in molecules so as to generate a probabilistic model of a molecule’s conformational
space, i.e. use GMMs to describe all the ways a molecule’s shape might change taking
into account all its rotatable bonds. Evaluating the similarity of two molecules would
then involve computing the overlap of the Gaussian components making up the GMM
representing each molecule, obviating the need to generate and evaluate separate con-
formers.

In our implementation we attempted to use a similar idea - we encoded each molecule
as a GMM generated from its conformer descriptors. We then computed the similarity
between two molecules as the overlap of the Gaussian components making up their
respective GMMs. We experimented with several GMM overlap metrics such as:

� Bhattacharyya affinity (Jebara et al., 2004)

� Expected Likelihood (Jebara et al., 2004)
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� Normalized Matching Probability (Zhou et al., 2017)

Preliminary tests, however showed that results obtained using this scheme were not
satisfactory and this avenue of research was put on hold in favour of other approaches
that proved to be more promising.

3.6.2 | Artificial Neural Networks
In order to explore the performance of ANNs in the context of our research, we have
built a Keras4 v.2.2.4 with a Tensorflow v.1.12.2 backend to implement a simple ANN.
We configured the input layer of the ANN to consist of one neuron per descriptor vector
element, i.e. 12 neurons for USR, 15 neurons for ES4D and 18 for ES5D. We also con-
figured a single hidden 100-neuron layer using the relu activation function as well as a
linear single-neuron output.

The ANN was trained using both active and decoy data. The labels used during
training are a value of 100 for conformers of active molecules and 0 for conformers of
decoys. This is to allow the network to generate a variety of output values between 0
and 100 which are then used as similarity scores.

During evaluation, we compute a similarity score for every conformer in every
search molecule and we take the maximum similarity score per molecule as the overall
similarity score for that search molecule.

Again, in common with the other machine learning methods, we order the molecules
by similarity score and we generate the Enrichment Factor and ROC curves.

3.6.3 | Isolation Forest
In our evaluation of the Isolation Forest algorithm we used the sklearn.ensemble.

IsolationForest class in the Scikit-learn library to implement an Isolation Forest-based
classifier on the conformer datasets, tuning the number of estimators hyperparameter
for the Isolation Forest model between the values of 500, 100 and 10 during the cross-
validation process.

The Scikit-learn implementation of Isolation Forest exposes a decision_function()

method which, given one or more input records, returns an average anomaly score for
each record, computed over the base classifiers of the trained Isolation Forest model.
Conveniently, this function returns a positive score for inliers and a negative score
for outliers, therefore the average anomaly score can also be used to rank candidate

4http://keras.io [last accessed 7th May 2019]
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molecules by similarity with respect to the active molecules on which the model was
trained.

Using this function, we compute the average anomaly score for every conformer in
a search molecule and we select the maximum score as the overall score for the search
molecule. We then sort the search molecules by similarity score and we calculate the
Enrichment Factor and ROC Curves.

3.6.4 | Implementation Details
In this sub-section we detail the software packages that we used during the course of
the research project as well as the hardware on which we generated our results. Each
step in our process pipeline presented different requirements, therefore we have listed
each process’ details in a separate sub-section.

3.6.4.1 | Conformer and Descriptor Generation

The conformer generation and descriptor generation processes were combined into a
single Python 3.6 script which was run on a spark cluster of 3 Amazon Web Services
(AWS) compute-optimised c5.2xlarge instances having 8 cores and 16GB each.

The conformer generation process makes use of RDKit 2008.09.1 and was run on
Spark 2.3.0. The descriptor generation process uses no external dependencies.

Subsequently during the project we transitioned to a single server with a 64 core
Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz cpu with 125Gb of RAM.

3.6.4.2 | USR/ElectroShape-4D/ElectroShape-5D Implementation

Our implementation of the USR family of algorithms was run on a Spark v.2.3.0 cluster
made up of of 3 AWS r5.2xlarge instances with 8 cores and 64 GB of memory each.

Subsequently during the project we transitioned to a single server with a 64 core
Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz cpu with 125Gb of RAM.

3.6.4.3 | Gaussian Mixture Model and Isolation Forest Evaluations

For both our GMM and Isolation Forest evaluations, we made use of the implementa-
tions provided by the Scikit-learn v.0.19.1 library. They were both trained on a server
having twin Intel Xeon E5-2660 v.4 CPUs, giving a total of 28 physical cores and 56
threads, and 128Gb of RAM.

Subsequently during the project we transitioned to a single server with a 64 core
Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz cpu with 125Gb of RAM.
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3.6.4.4 | Artificial Nerual Network Evaluation

The ANN evaluation code is based on Keras v.2.2.4 with a Tensorflow v.1.12.2 backend.
The ANN was implemented in Python and was trained on an Amazon EC2 p2.xlarge in-
stance with 4 cores, 61GB of memory and a single NVIDIA K80 GPU with 2,486 parallel
processing cores and 12GB of on-board memory.

Subsequently during the project we transitioned to a single server with a 64 core
Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz cpu with 125Gb of RAM.

3.7 | Summary
In this chapter we have presented a detailed description of the code that was required to
meet the objectives of this research project. We have presented an overview of the pro-
cess pipeline which allowed us to generate the results required to answer the research
questions posed in the Introduction chapter.

Additionally, we have also detailed our method of conformer and USR descriptor
generation which is the foundation of the USR family of methods. Following this, we
have described our implementation of several methods in the USR family which we
used to generate a baseline performance measure against which we could compare the
performance of our machine learning models.

We have described briefly our custom dataset loading and partitioning code, which
was necessary to implement as the out of the box functions provided with most Python
libraries were not suited to handling the conformer data efficiently.

Finally we have described our machine learning training and evaluation pipeline
along with the implementations specific to the three machine learning Models that we
selected to explore within the scope of the project.

In the following chapter, we present the results yielded by our experiments which
we evaluate and examine in later chapters.
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4

Results & Evaluation

In accordance with the aims and objectives stated in Section 1.4, we have implemented
several experiments based on the datasets in DUD-E as follows:

� Baseline implementations of USR and ES5D and retrospective screening on the 38
targets chosen from DUD-E using full conformer models for the molecule datasets.
These targets were chosen because much previous work done on LBVS is based
on the DUD database. In particular Armstrong et al. (2010, 2011) evaluate their
results basing themselves on the compounds provided in DUD.

� USR and ES5D retrospective screening on the same targets using only the Lowest
Energy Conformers from the active templates instead of the full conformer model.
This is suggested in Ballester et al. (2009a).

� Gaussian Mixture Model retrospective screening based on ES5D descriptors.

� Isolation Forest retrospective screening based on ES5D descriptors.

� Neural Network retrospective screening based on ES5D descriptors.

GMMs and Isolation Forests can be trained exclusively using positive examples (ac-
tive compounds in our case), thus mimicking the traditional virtual screening process.
Our Neural Networks, on the other hand, were trained in a standard supervised man-
ner, using both actives and decoys as training data. This is to be enable comparison of
the performance given by both types of approaches.

Due to time and resource availability, we chose to forego performing experiments
using CSR and ElectroShape-4D because previous work shows that the performance of
ES5D matches or improves on both (Armstrong et al., 2011). For similar reasons the
ML-based experiments were performed on ES5D descriptors.
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4.1 | Benchmark USR Results
The first step in our research was to replicate the results of Ballester et al. (2009a) and
Armstrong et al. (2011) by implementing the USR, ES5D algorithms and using them to
run retrospective screening experiments on the DUD-E targets. This allowed us to com-
pare the performance obtained by ES5D compared to plain USR and verify the results of
Armstrong et al. (2011). These experiments were done using the full conformer model
for all the actives and repeated using only the active LECs. The resulting comparative
performance in terms of Enrichment Factor as well as AUC can be seen in Figures 4.1
and 4.2.

As can be seen from Figure 4.1, the enrichment at 1% is significantly better that that at
5%. This is an expected outcome because, as pointed out in Ballester (2011), USR is most
effective at the high similarity range and therefore naturally obtains better enrichment
at lower threshold values corresponding to higher similarity.

The performance in terms of AUC, shown in Figure 4.2 also shows that on average
ES5D outperforms plain USR except for 11 targets.

Figures 4.3 and 4.4 show the corresponding plots for the LEC-based implementa-
tions. As expected, the enrichment factor obtained by the experiments using the LECs
is lower than those using the full conformer model. The AUC is also lower for the LEC
experiments. Interestingly, however, the performance hit seems to be lower for ES5D
than for USR. This is likely due to the fact that the ElectroShape methods use atomic
properties that are not exclusively spatial and are therefore less affected by conformer
configuration.

A comparison of the enrichment factor at 1% of USR and ES5D is shown in Fig-
ures 4.6 and 4.7 for full conformers and LEC respectively. It can be seen from these fig-
ures that the ES5D improves the enrichment over USR in all targets to varying degrees,
up to a maximum improvement of almost 8 times that obtained by USR. It is interesting
to note that the improvement of ES5D over USR is similar for both full conformers as
well as LEC.

The evaluation of USR in Ballester et al. (2009a) did not make use of DUD and only
involved 8 targets, therefore a comprehensive performance comparison to our imple-
mentation is not possible. In Armstrong et al. (2011), however, the entire DUD is used,
therefore a comparison is more meaningful.

In order to facilitate comparison of the performance of our implementation of ES5D
to that in Armstrong et al. (2011), we have reproduced a visualisation of the Enrichment
Factor performance obtained therein in Figure 4.5

Unfortunately, it is not possible to directly compare the enrichment factor across
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Figure 4.1: USR comparative performance of Enrichment Factor at 1% and 5% obtained
from retrospective screening using full conformer models.
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Figure 4.2: USR and ES5D comparative AUC performance obtained from retrospective
screening using full conformer model.
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Figure 4.3: USR comparative performance of Enrichment Factor at 1% and 5% obtained
using Lowest Energy Conformers.
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Figure 4.4: USR and ES5D comparative AUC performance using Lowest Energy Con-
formers.
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Figure 4.5: EF1% of ES5D calculated on the DUD database as reported in Armstrong
et al. (2011). Reproduced from Armstrong et al. (2011)

datasets, possibly having different selection criteria for decoys and well as different
ratios of actives to decoys. This is because the maximum possible enrichment factor at
the top n% of a dataset of which x% are actives is min(100/n, 100/x). This means that
the enrichment factor depends on the ratio of actives to decoys in the given dataset.
Given that DUD and DUD-E have different active to decoy ratios, the comparison is
problematic. Apart from this, as pointed out in Ballester et al. (2009a), the Conformers
Per Molecule (CPM) can also have an effect on the enrichment achieved.

We can observe, however, that in general, targets in Figure 4.5 (marked "5D(x, y, z,
q = MMFF94x, alogP)") from the original paper show a similar trend to those generated
by us in Figure 4.7, i.e. most targets that show a high enrichment in one also show a high
enrichment in the other and vice versa, but not all. The Pearson product-moment cor-
relation coefficient for the two sets of data is 0.35, indicating a mild positive correlation.
Given the differences in decoy selection in DUD-E in comparison with DUD Mysinger
et al. (2012), it is not surprising that our results differ somewhat from those obtained
by Armstrong. This relatively low, albeit positive, correlation coefficient, indicates that
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differences in dataset selection can have a significant impact on virtual screening results.

In order to illustrate better the relative performance impact of using the LEC instead
of the full conformer model, in Figure 4.8 we have plotted the EF1% of ES5D using LECs
vs. using full conformers.

It can be seen from this plot that for most targets, using LECs instead of full conform-
ers only yields a small performance penalty, with the maximum being approximately
32% decrease, but with an average performance degradation of 9.4%.

4.2 | Machine Learning Results and Comparison with
USR

In this section we present the results we obtained in our retrospective screening ex-
periments using machine learning techniques and contrast them with the non-machine
learning results presented in the previous section. Since ES5D consistently performs bet-
ter than USR, we have used ES5D descriptors as training data for our machine learning
models in an attempt to obtain the best possible scores.

In all our machine learning experiments, we have trained two versions of each type
of model - one using full conformer models and one using only LECs so as to be able
to compare their performance. It is clear that using exclusively the LECs to train our
models requires much less memory and processing power because the amount of data
involved in the process is much less (on average 61 times smaller) than that for using
full conformers. As will be demonstrated in the following sections, we have managed
to obtain significantly better performance using only the LECs compared to standard
ES5D and this is in itself a significant result in line with our second research question
(see Section 1.4).

4.2.1 | Gaussian Mixture Models
The performance for our GMM models in terms of EF can be seen in Figures 4.9 and
4.10 for full conformers and LECs respectively while that in terms of AUC is shown in
Figures 4.11 and 4.12.

As can be seen from the above figures, while the use of the full conformer model to
train the GMM yields better results than training with LECs, the LEC results still outper-
form ES5D significantly, with a mean improvement of 290% and a maximum of 829% in
terns of EF1% as well as 133% mean improvement and 171% maximum improvement in
terms of AUC.
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Figure 4.6: Comparison of USR enrichment at 1% and ES5D enrichment at 1% (full
conformers) along with the ratio between them. Mean ratio=2.529±1.219, max=7.381,
min=1.041
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Figure 4.7: Comparison of USR enrichment at 1% and ES5D enrichment at 1% (LEC)
along with the ratio between them. Mean ratio=2.830±1.253, max=7.553, min=1.242
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Figure 4.8: Comparison of ES5D enrichment @ 1% using full conformer model vs. using
LECs. Mean performance degradation: 9.4%

Using full conformers, on the other hand, we obtained a mean improvement of 432%
over ES5D in terms of EF1% with a maximum improvement of 941%. In terms of AUC,
the mean improvement is 138% and maximum improvement 173%.

4.2.2 | Isolation Forest
The EF1% performance for our Isolation Forest models can be seen in Figures 4.13 and
4.14 for full conformers and LECs respectively while that in terms of AUC is shown in
Figures 4.15 and 4.16.

Similarly to the results observed for GMMs, we get better performance using full
conformers than using LECs. For most targets, the LEC performance improves on ES5D,
giving a mean improvement of 190% and a maximum improvement of 460% in terms of
EF as well as 123% mean and 152% maximum improvement in terms of AUC.

The use of full conformers obtains a mean improvement of 211% over ES5D in terms
of EF1% with a maximum improvement of 403%. In terms of AUC, the mean improve-
ment is 123% and maximum improvement 152%.

Isolation Forest did not register performance increases across all targets however.
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Figure 4.9: Comparative EF1% of GMM vs.ES5D using full conformer model. Mean
improvement 432%. Maximum improvement 941%

PGH1
PDE5A
PRGR

PARP1
PGH2
M

K14
EGFR
GCR

FG
FR

1
PYGM
HIV

RT
SRC

ANDR
FA

10
VGFR

2
HIV

PR
HS90

A
ESR1
ALD

R
ADA
M

CR
DYR
ACE

NRAM
CDK2
PNPH

PPARG
HM

DH
RXRA
ACES
KIT

H
PUR2
TR

Y1
SAHH
COM

T
TH

RB
AM

PC
IN

HA

Target

0

10

20

30

40

50

60

E
nr

ic
hm

en
t

GMM(LEC) EF1% vs. ElectroShape5D(LEC) EF1%

GMM(LEC) EF1%
ElectroShape5D(LEC) EF1%
GMM/ES5D Enrichment Ratio@1%

0

2

4

6

8

10

G
M

M
/E

S
5

D
 R

at
io

Figure 4.10: Comparative EF1% of GMM vs.ES5D using Lowest Energy Conformers.
Mean improvement 290%. Maximum improvement 829%.
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Figure 4.11: Comparative AUC of GMM vs.ES5D using full conformer model. Mean
improvement 138%. Maximum improvement 173%
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Figure 4.12: Comparative AUC of GMM vs ES5D using full conformer model. Mean
improvement 133%. Maximum improvement 171%.
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Figure 4.13: Comparative EF1% of IsoForest vs.ES5D using full conformer model. Mean
improvement 211%. Maximum improvement 403%
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Figure 4.14: Comparative EF1% of IsoForest vs.ES5D using full conformer model. Mean
improvement 190%. Maximum improvement 460%
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Figure 4.15: Comparative AUC of IsoForest vs.ES5D using full conformer models. Mean
improvement 123%. Maximum improvement 152%.
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Figure 4.16: Comparative AUC of IsoForest vs ES5D using full conformer model. Mean
improvement 126%. Maximum improvement 155%
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Cdk2 scored 0 EF1% for both full conformers as well as LECs, while ampc scored 0 only
on the full conformers model and only registering a modest improvement when trained
on LECs. Several other targets registered a decrease in EF performance compared to
ES5D. In terms of AUC, however, all targets performed better for both full conformer as
well as LEC models. This indicates that the early enrichment characteristics of Isolation
Forest may not be ideal for the task of virtual screening. Examining, for example, the
ROC curve for cdk2, seen in Figures 4.17 and 4.18, we can see that indeed, the first part
of the curve dips below the 0.5 diagonal, indicating poor early enrichment. Indeed the
ROC curve for the full conformer model is significantly worse than that for the LEC
model. Both, however score 0 at the 1% level enrichment.

4.2.3 | Artificial Neural Networks
As for GMMs and Isolation Forests, we trained two versions of ANN - full conformer
versions and LEC versions. As expected, the major advantage of using LECs for train-
ing data is that a much smaller volume of data is used to train the model resulting
in shorter training time requirements. We expected to see a performance drop in the
LEC model with respect to the full conformer-trained model, as for the other models,
however, training both using a hidden layer size of 100 nodes, this did not materialise
and the performance obtained for the LEC-trained model was virtually the same as
that for full-conformer-trained models, for the same hidden layer size (2.558±1.067 vs.
2.563±1.292).

Upon increasing the hidden layer size to 500 nodes, this situation did not change ap-
preciably (3.332±1.289 vs. 3.276±1.485). It is also interesting that the ANN performance
did not surpass that of the full-conformer GMM. From these results, it seems that the
ANN model does not cope with full conformer data as well as GMMs.

The EF1% performance for our ANN models can be seen in Figures 4.19, 4.20, 4.21
for full conformers with hidden layer sizes of 500 and 100 nodes and LECs respectively
while that in terms of AUC is shown in Figures 4.22, 4.23 and 4.24.

Nevertheless, even for the lower-performing, 100-node ANN models, for most tar-
gets, the ANN performance improves on ES5D. Both 100-node ANNs give a mean im-
provement of 256% and maximum improvements of 491% for LECs and 565% for full
conformers, in terms of EF1% as well as almost 140% mean and 175% maximum im-
provement in terms of AUC. The 500-node version of the full conformer model yields a
mean improvement of 328% and a maximum of 613% while the LEC version obtains a
mean of 333% with a maximum of 618%.
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Figure 4.17: ROC Curve for target CDK2 for Isolation Forest trained with full conform-
ers.
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Figure 4.18: ROC Curve for target CDK2 for Isolation Forest trained with Lowest Energy
Conformers.
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Figure 4.19: Comparative EF1% of Neural Network vs. ES5D using full conformer model
(hidden layer size=500). Mean improvement 328%. Maximum improvement 636%
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Figure 4.20: Comparative EF1% of Neural Network vs. ES5D using full conformer model
(hidden layer size=100). Mean improvement 256%. Maximum improvement 564%
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Figure 4.21: Comparative EF1% of Neural Network vs. ES5D using LECs (hidden layer
size=100). Mean improvement 256%. Maximum improvement 491%.

4.3 | Full Dataset Performance Summary
In order to facilitate the comparison of our results, we have summarised the basic statis-
tics related to the enrichment factor at 1% and the AUC that we have obtained across
the evaluated models. These can be seen in Table 4.1. These are shown in terms of im-
provement ratio of ES5D, such that a value of 1 indicates that the same performance as
ES5D was obtained.

4.4 | Variation with Dataset Size
We have repeated our experiments for every machine learning algorithm multiple times
using successively smaller portions of the available dataset so as to explore the manner
in which the performance given by each model degrades with dataset size. This is in
keeping with our second research question and fulfils objective 6 as described in Sec-
tion 1.4, i.e. to run further experiments decreasing the number of known actives so as to
understand how the performance of machine learning models trained on a reduced data
set compares to standard USR. We have illustrated the respective performance change
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Figure 4.22: Comparative AUC of Neural Network vs. ES5D using full conformer
model(hidden layer size=500). Mean improvement 143%. Maximum improvement
177%.

HIVPR
CDK2

THRB
TRY1

FA10
GCR

PGH1
PGH2

VGFR2
MK14

ESR1

HIVRT

HS90A
SRC

ANDR
EGFR

PNPH
AMPC

ACES
ALDR

FGFR1
MCR

PPARG
PRGR

PDE5A
ADA

KITH
PYGM

ACE
RXRA

PARP1

HMDH
DYR

COMT
NRAM

IN
HA

PUR2
SAHH

Target

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
O

C
 A

U
C

ANN(Full, hidden layer=100) ROC AUC vs. ElectroShape5D ROC AUC

ANN(Full) ROC AUC
ElectroShape5D ROC AUC
ANN(Full)/ES5D ROC AUC Ratio

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

A
N

N
(F

ul
l))

/E
S

5
D

 R
at

io

Figure 4.23: Comparative AUC of Neural Network vs. ES5D using full conformer
model(hidden layer size=100). Mean improvement 136%. Maximum improvement
173%.
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Figure 4.24: Comparative AUC of Neural Network vs. ES5D using LECs(hidden layer
size=100). Mean improvement 139%. Maximum improvement 175%

LEC GMM IsoForest
ANN
(Hidden layer=100)

ANN
(Hidden layer=500)

Mean(±std) 2.912 (±1.623) 1.905(±0.839) 2.558(±1.067) 3.332(±1.289)
Max 8.290 4.599 4.912 6.180
Min 0.000 0.000 0.573 1.205
Mean AUC(±std) 1.334(±0.166) 1.258(±0.152) 1.394(±0.165) 1.443(±0.210)
Max AUC 1.706 1.545 1.752 1.785
Min AUC 1.038 0.992 1.045 1.046

Full Conformers

Mean(±std) 4.300(±2.227) 2.113(±0.901) 2.563(±1.292) 3.276(±1.485)
Max 9.409 4.025 5.645 6.363
Min 1.071 0.000 0.820 0.303
Mean AUC(±std) 1.378(±0.194) 1.236(±0.142) 1.363(±0.196) 1.427(±0.204)
Max AUC 1.726 1.529 1.725 1.771
Min AUC 1.046 0.986 1.026 1.036

Table 4.1: Summary of machine-learning results expressed as improvement ratios over
ES5D. A value of one indicates that the same performance as ES5D was obtained.
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with the fraction of dataset used for training and evaluation for all our models, both in
full conformer as well as LEC versions in Figures 4.25-4.32.

We then caluclated the actual number of actives involved in the training for each
target and each dataset fraction and binned the result into 9 bins so as to get an under-
standing how the performance of the models varies with number of actives used for
training. These plots can be seen in Figures 4.33-4.40

The statistical significance annotations were computed using the Wilcoxon rank-sum
test (Mann and Whitney, 1947). This is a non-parametric test and therefore does not
assume normality in the data. We have visually checked the distribution for each bin
using histograms and found that they were not normal. It also assumed that the groups
being compared are independent and not paired, which is the case with our box plots.
The Wilcocon rank-sum test tests the null hypothesis that for any two observations a and
b drawn from group A and group B respectively, P(a > b) = P(b > a). The alternative
hypothesis rejects this, i.e. the distributions are not equal.

It is apparent from these figures that performance is better maintained for low num-
ber of actives by using full conformer models than by LECs. This conclusion is borne
out by both the figures plotting performance against the dataset fraction used as well as
by those against number of actives. Nevertheless, even for small active training sets for
which the mean performance is low, outliers are apparent with high enrichment factors.
This shows that the performance of the methods we have explored is highly dependent
on the protein target that is being considered and it is difficult to know a-priori, how
well a method will perform given the number of available actives.

For LEC models a performance peak is apparent at around 25-49 actives, beyond
which performance degrades again. We observed this effect on GMMs and Isolation
Forest models, but not on Neural Networks. It is possible that implementing a more
comprehensive parameter sweep during the tuning of these models could eliminate
or reduce this effect. For example, in the case of GMMs, allowing a larger number of
Gaussian components would probably resolve the active clusters better and improve
performance for larger numbers of actives.

4.5 | Retrospective ScreeningRunning-timeofMachine
Learning Models

In order to understand how the time required to train and perform a retrospective vir-
tual screening run varies with dataset size, we plotted the time taken to perform our
experiments against the corresponding dataset portion used as training set using box
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Figure 4.25: Performance variation of full-conformer model GMM with dataset fraction
used for training.
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Figure 4.26: Performance variation of LEC model GMM with dataset fraction used for
training.
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Figure 4.27: Performance variation of full-conformer model Isolation Forest with dataset
fraction used for training.
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Figure 4.28: Performance variation of LEC model Isolation Forest with dataset fraction
used for training.
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Figure 4.29: Performance variation of full-conformer model neural network (hidden
layer size=100) with dataset fraction used for training.
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Figure 4.30: Performance variation of LEC model neural netowork (hidden layer
size=100) with dataset fraction used for training.
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Figure 4.31: Performance variation of full-conformer model neural network (hidden
layer size=500) with dataset fraction used for training.
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Figure 4.32: Performance variation of LEC model neural netowork (hidden layer
size=500) with dataset fraction used for training.

95



Chapter 4. Results & Evaluation 4.5. Running-time of ML Models

14
(6 tgts.)

59
(17 tgts.)

1024
(32 tgts.)

2549
(35 tgts.)

5099
(32 tgts.)

100199
(20 tgts.)

200299
(34 tgts.)

300599
(1 tgts.)

600899
(3 tgts.)

Number of actives

0

20

40

60

80

100

EF
1%

p=.001

Variation of GMM(Full) EF1% with Training Set Size

Figure 4.33: Performance variation of full-conformer model GMM with number of ac-
tives.
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Figure 4.34: Performance variation of LEC model GMM with number of actives.
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Figure 4.35: Performance variation of full-conformer model Isolation Forest with num-
ber of actives.
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Figure 4.36: Performance variation of LEC model Isolation Forest with number of ac-
tives.
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Figure 4.37: Performance variation of full-conformer model neural network (hidden
layer size=100) with number of actives.
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Figure 4.38: Performance variation of LEC model neural netowork (hidden layer
size=100) with number of actives.
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Figure 4.39: Performance variation of full-conformer model neural network (hidden
layer size=500) with number of actives.
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Figure 4.40: Performance variation of LEC model neural netowork (hidden layer
size=500) with number of actives.
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plots, with separate boxes representing the run-time for each machine learning algo-
rithm. The timings include the time taken to train the final, tuned model and evaluate
the molecules under test. These plots are shown in Figures 4.41 and 4.42. Note that, if
used in a prospective screening scenario, a machine learning model would have been
pre-trained from the available training data, therefore the time required for training
would not be a factor when measuring the running time for such a study. In this case,
however, since a retrospective experiment was being carried out we considered the total
time required to be an important consideration.

It is apparent from these plots that GMMs were the quickest models overall for
LEC models (8s±11s mean time) and the second quickest for the full conformer mod-
els (787s±868s mean time). For full conformer-trained models, GMMs were quicker
for dataset fractions up to 60% of the full dataset, however were slower than Isolation
Forest for dataset fractions larger than 60%. At the 30% fraction the GMM speed ap-
peared to dip. This dataset fraction, however, appears to also have an unusual number
of outlier data points and could have been caused by transient resource contention on
the machine on which the experiments were being run.

Isolation Forest speed performance compared favourably to GMMs for large datasets
when using full conformer models (397s±373s mean time for isolation forest vs. 787s
for GMMs), however for smaller datasets using LECs it was considerably slower than
the other algorithms, including ANNs (453s±423s for Isolation Forest vs. 131s±89s for
ANNs). This is quite surprising and is likely due to the fact that no matter the size of the
training data, an ensemble of decision trees of comparable size need to be created by the
algorithm. Tweaking the hyper-parameters to use smaller ensembles for LECs would
probably make the this model faster, however, this was not attempted in this study.

Neural Networks appears to be the algorithm that is the most consistent with respect
to time performance. In general it is the slowest algorithm (1855s±1659s mean time for
full conformers and 131s±89s mean time for LECs), except for Isolation Forest in the
LEC scenario.

Finally, we compared the required run-time for the machine learning models with
that required for USR and ES5D. These timings for the non-machine learning algorithms
are shown in Figure 4.43 and 4.44 for full conformer models and LECs respectively.

Comparing the timings for USR and ES5D screening runs, it is immediately apparent
that significant time-savings are obtained by the use of LECs over the full conformer
models. With a mean run-time of 5,021s for USR and 7,409s for ES5D for full conformers,
LEC is clearly much faster with a mean of 804s for USR and 883s for ES5D.

In order to directly compare the timings for all three machine learning algorithms,
we have provided the mean, maximum and minimum run-times averaged over all the
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Figure 4.41: Run-time for training and retrospective screening for full conformer mod-
els.
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Figure 4.42: Run-time for training and retrospective screening forLEC models.
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Figure 4.43: Run-time in seconds for USR and ES5D retrospective screening using full
conformer models.
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Figure 4.44: Run-time in seconds for USR and ES5D retrospective screening using LECs.
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LEC USR ES5 GMM IsoForest ANN(100) ANN(500)

Mean(s) (±s.d.) 804(±594) 883(±661) 8(±11) 453(±423) 134(±92) 285(±413)
Max(s) 1,882 2,212 52 1,359.00 390 2,290
Min(s) 100 104 0.7 13 10 14

Full Conformers USR ES5 GMM IsoForest ANN(100) ANN(500)

Mean(s) (±s.d.) 5021(±6699) 7409(±16985) 789(±868) 397(±373) 934(±825) 1855(±1649)
Max(s) 27,940 102,034 3,126 1,212 3,264 6,600
Min(s) 59 61 6 14 87 202

Table 4.2: Tabulated runnimg-time statistics for all LEC and full conformer models. Tim-
ings are shown in seconds and include training and testing.

targets in Table. 4.2, for the full dataset virtual screening experiments. We did not con-
sider the sub-100% dataset fractions because we only ran USR and ES5D experiments on
the full datasets, therefore we wanted to compare like with like. Additionally, reduced-
dataset runs, will, of course, always take less time to run than using the full dataset.

From these tables it is clear that the timings for all three machine learning algorithms
are considerably better than those for USR and ES5D in terms of all three statistics.

As observed previously, GMM takes by far the least amount of time on average than
any other method when trained with LECs, and is slightly slower that Isolation Forests
for the very largest datasets. The time needed is, however, still far smaller that that for
either USR or ES5D. When trained on smaller datasets, however, the speed of GMMs
is impressive, being orders of magnitude faster on LEC training data than any other
method.

In general, it appears that Isolation Forest is the slowest method on average, except,
as mentioned above, in the case of the full conformer model training.

4.6 | Discussion
As outlined in Section 1.4, the primary aim of this study is to investigate if machine
learning techniques can be used in lieu of the standard Manhattan distance-based simi-
larity score used by the USR family of methods and if in this way, the virtual screening
performance of the technique could be improved.

The results we obtained demonstrate unambiguously that this aim has been ful-
filled. We have considered three different machine learning methods we selected due
to their applicability to the problem of ranking molecules by similarity, and doing so
we obtained mean improvements over ES5D in terms of Enrichment Factor at 1% rang-
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ing from 190% to 293% mean improvement with LEC-trained models, to 196% to 432%
improvement using full conformer training. In terms of AUC we have obtained mean
improvements of 133% to 136% on LEC models and 123% to 138% when training on full
conformers.

These improvements over ES5D are of a similar magnitude to the performance in-
crease afforded by ES5D itself over USR (maximum improvement 738%, mean 253% for
full conformers and maximum 755%, mean 283% for LECs) and are, therefore, highly
significant. Machine learning algorithms assimilate the features of all the active molecules
into a single model, in contrast to the naïve USR-based algorithms which can only con-
sider one molecule at a time as a search query. This feature of machine-learning algo-
rithms appears to make a large difference to the similarity matching performance in the
LBVS context when compared with the non-machine learning USR family of methods.

In addition to the above encouraging results, it is also significant that, notwithstand-
ing the necessity to train the machine learning models before running the virtual screen-
ing procedure, the total time required to perform our retrospective screening runs on
each target took, on average, a much shorter time to complete than the standard USR
algorithms. Part of this discrepancy is likely the efficiency of our Python implementa-
tion of USR, which must necessarily be slower than the c-based implementations of the
algorithms in the Scikit-learn library. The magnitude of the difference however, makes it
unlikely for this to be the entire explanation. A large part of the discrepancy also comes
from the fact that, in USR, all the conformers in the test set of molecules must be com-
pared to every conformer of the active molecule, and this must be done for every active
search template molecule. Over the course of an entire retrospective screening run, this
adds up to a large amount of computation.

With machine learning algorithms, however, this is not necessary. The bulk of the
running-time when using machine learning methods is the training of the model, how-
ever this, in general, does not require the repeated comparison of all the data points with
all the active data points in a Cartesian product fashion. Additionally, once a model is
trained, classifying new data points is generally a fast process because it does not in-
volve comparing the new point with the training data directly, but only requires that
the new data be evaluated according to the statistical model built during training. All
this, clearly depending on which particular machine learning algorithm is being used,
implies a much smaller amount of computation than the "brute force" approach inherent
in standard USR.

Our second aim in the pursuit of this project is to explore the way in which ma-
chine learning models respond to decreasing dataset sizes. Algorithms that maintain
good early enrichment with small datasets are desirable in the LBVS context because,
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often, only a small number of active molecules are known in advance, and hence a large
training dataset will not be available.

Our results, presented in the previous sections, show that, on average, the machine
learning algorithms trained on full conformer models tend to preserve early enrichment
performance better than those trained on LECs when trained on a small number of
actives. It would appear, therefore, that when less than 25 actives are available, it would
be advantageous to train using full conformers in order to obtain a significantly better
performance than the equivalent training using LECs. In these cases, the performance-
speed trade-off caused by the increased volume of data inherent in using full conformers
is not so onerous by virtue of the small training set size that is implied.

When taking into consideration, both the early enrichment performance of our mod-
els, as well as the mean running time required to complete a retrospective screening
run, our conclusion is that, considering the three machine learning algorithms explored
in this study, the GMM algorithm is the one that is recommended in most cases. This
is because it produces, on average, the best early enrichment scores and does so in the
smallest amount of time compared to the other algorithms.

4.7 | Summary
In this chapter we present the results we obtained in pursuit of our stated research ques-
tions. We have initially implemented the USR and ES5D algorithms, so as to perform
a set of retrospective virtual screening runs based on the DUD-E datasets we selected
as described in the Methodology chapter. The DUD-E targets that we chose were the
same targets available in the DUD database so as to make comparison with earlier work
mostly performed using DUD possible. By doing this, we obtained a set of baseline per-
formance measures against which we could then compare the results obtained by our
machine learning models.

We next set up machine learning pipelines for three representative algorithms which
we deemed to be conducive to obtaining relevant results in the LBVS problem, namely,
Gaussian Mixture Models, Isolation Forests and Neural Networks.

We ran retrospective screening experiments on the same DUD-E targets so as to
obtain corresponding performance scores, and additionally we also ran screening ex-
periments on successively smaller fractions of the available datasets so as to chart the
performance degradation of our models with dataset size.

From the results thus obtained, we calculated improvement ratios, comparing the
performance of our models with that of standard ES5D, thus confirming a significant
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performance increase obtained through machine learning. We also determined that our
models were also good at preserving screening performance with decreasing dataset
size, especially those trained with full conformer molecule models. These are both im-
portant results which we believe will be of significant future value to researchers in the
field.

During the course of our retrospective screening experiments, we stored timing in-
formation, keeping a record of the required time to complete the given experiment.
Through this we showed that machine learning algorithms can complete retrospective
screening in a much shorter time-frame than the standard USR-based algorithms.

Finally, from the screening performance results as well as timing results that we ob-
tained, we determined that the GMM is, in general, the most effective algorithm to use
out of the three we considered in the study, both for its superior screening performance
compared to the other two, as well as to its fast training and evaluation time, giving
significant time savings over the other algorithms.
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5

Conclusions

In this dissertation we explore the potential that exists in applying machine-learning
to the USR family of methods. The standard USR method condenses the three dimen-
sional shapes of molecules into a small numeric descriptor vector that can be directly
compared to other USR descriptor vectors using a Manhattan distance-based metric. In
doing this a measure of shape-similarity between different molecules is obtained. In this
study we replace this naïve distance measure that is used in the standard USR family of
algorithms by instead, training several machine learning models directly using the USR
and ES5D descriptors themselves.

In Chapter 1 we give a brief introduction to the topic of cheminformatics and virtual
screening and describe the motivation behind our research. We give an overview of the
machine learning methods that we used as well as of the datasets on which we based our
research. We also state the aims and objectives of the project and outline the approach
followed by our research.

We give comprehensive background information about the domain of virtual screen-
ing in Chapter 2 and Appendix A. We give an account of the USR family of methods
delving in detail into the workings of the most important ones for this project. We also
give detailed information about molecules and conformers and about their generation
and processing in silico. Additionally, in this chapter we also give detailed information
about the machine learning methods we used in the course of the project as well as
about the evaluation criteria we use to evaluate our results. Finally, we also give an
overview of the existing research relating to our project.

In Chapter 3 we give implementation details about the processes we built for the
purposes of the project. During the course of the project we implemented the generation
of conformers from the 2D SMILES representations of molecules, our versions of several
USR methods as well as machine learning pipelines to tune, train and evaluate our
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machine learning models.
We present the results that we obtained in Chapter 4. Here we first evaluate our

benchmark implementation of the USR methods we chose. We subsequently also present
the evaluations of our machine learning results in absolute terms and also in terms of
improvement from our benchmark, non-USR results. In this chapter we present results
related to machine learning models trained on the full dataset as well as models trained
on successively smaller fractions of the available data, so as to be able to assess the ro-
bustness of a model with decreasing training set size. We also report results relating to
the time required to run retrospective virtual screening using each of our trained mod-
els.

5.1 | Revisiting Aims and Objectives
Through this research project we sought to answer two research questions, namely:

1. Can machine-learning techniques be used instead of naïve Manhattan distance to
improve Virtual Screening performance based on USR and USR-derived descrip-
tors?

2. What is the minimal amount of data required to adequately train the machine
learning model?

In order to answer the first research question, the first task was the implementation
of the conformer generation process, which takes the 2D SMILES molecule definitions
as provided in the DUD-E database, and from them generates a number of conformers
for each molecule that are sufficient to adequately sample the molecule’s conformational
space.

Once we had generated conformers for every selected protein target from DUD-
E, we implemented the basic USR algorithm as well as ES5D, one of the highest per-
forming, state of the art, variants of USR. Performing retrospective virtual screening
experiments using these algorithms gave us baseline performance figures with which
we could directly compare the performance of our trained machine learning models. In
order to verify that our implementation was working correctly, we compared our base-
line results to those in the literature, ascertaining that the performance obtained across
the common protein targets was similar.

We selected three machine learning algorithms that were suitable for applying to
the scenario of LBVS using USR descriptors, namely Gaussian Mixture Models, Isola-
tion Forests and Artificial Neural Networks and we trained and evaluated these models
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using chosen compound datasets from the DUD-E database. In doing so, we obtained
results that significantly outperformed USR as well as ES5D when using both the full
conformer models of the active compounds as training data, as well as when using
only the Lowest Energy Conformations (LECs). Concretely, in terms of EF1% the best
mean improvement over ES5D was that of 430% obtained using GMMs trained on full
conformers, the same models having obtained a maximum improvement of 941% over
ES5D. This was followed by a mean improvement of 328% with a maximum of 636%,
obtained by ANNs, again trained on full conformer models. When using LECs as train-
ing data, GMMs obtained a mean performance improvement of 291% and a maximum
of 829%, outperforming ANNs which obtained a mean improvement of 257% with a
maximum of 613%. It is clear, however, that some targets are more responsive to screen-
ing by USR descriptors, there being a relatively large variance in the mean performance
figures. This is also reflected in the literature (Armstrong et al., 2009, 2010, 2011; Ballester
et al., 2009a) and is therefore expected.

The results obtained from these experiments demonstrate that the answer to the first
research question is in the affirmative. We have indeed found ample potential in the use
of machine learning techniques for improving the yield of virtual screening processes
making use of USR and USR-derived descriptors.

Furthermore, we also compared the running times of the machine learning retro-
spective virtual screening experiments with the time required for the non-machine learn-
ing ones and showed that even considering the time required to train the models, the
machine learning experiments took an order of magnitude less time to run than the
plain USR ones.

In order to explore our second research question, we trained the machine learning
models on progressively smaller fractions of the chosen DUD-E datasets so as to explore
the manner in which the performance of the models varied with decreasing training
dataset size. Through our results we demonstrated that when using full conformers to
train the models, better performance is obtained when the number of actives is low. In
general a performance peak is observed when training with 25-49 actives. With the LEC
models, this peak is more pronounced, indicating that for small active training sets it is
more advantageous to train with full conformers than LECs.

A general observation in our results is that, across the machine learning models that
we trained, those trained on full conformers preserve good performance when trained
with as little as 5-9 actives, while with those trained on LECs, the cutoff is in the 10-24
active range, further confirming our conclusion that for small datasets, models should
be trained using full conformer models.

Taking into account all the results obtained, we came to the conclusion that GMMs
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were, overall, the most efficient models that we tested, achieving excellent performance
in the shortest time (except for the largest datasets) and while also exhibiting good sta-
bility with decreasing dataset size.

5.2 | Critique and Limitations
While the aims of the research project have been reached, as evidenced by our results,
the broad exploration that the research questions required, meant that the available
time and resources put a limit as to how exhaustively every machine learning algorithm
could be explored.

For all three machine learning models we only performed tuning on the major hyper-
parameters, accepting default values for others, however it is not to be excluded that
better performance could have been obtained by including other hyper-parameters in
the parameter sweep during model tuning. Also due to resource limitations, the search
space for the hyper-parameters that were tuned might not have been chosen to be wide
enough in scope. A possible corroboration of this is that some models exhibited a per-
formance drop with a larger number of training actives indicating that a higher model
complexity was required to successfully model the training data.

Much of the older work related to USR was evaluated relative to the DUD database
which provides ligand datasets for 40 protein targets. DUD, however, has been shown
to be problematic in its choice of decoys, possibly resulting in better performance in ret-
rospective screening experiments than would occur in corresponding prospective stud-
ies. Due to this, we chose to use the improved DUD-E database instead to evaluate our
models. Due to resource limitations, however, we were forced to select a subset of the
120 protein targets provided in DUD-E. In order to be able to facilitate comparisons with
older work, we chose to use a 38 molecule subset of the DUD-E with targets correspond-
ing to targets provided in DUD. Ideally, however, the study should be performed on all
the targets in DUD-E.

Finally, even though we have obtained promising results in our retrospective stud-
ies, the proof of any virtual screening method is its success in discovering new leads in
a prospective study. Of course, this is beyond the scope of this project, however the tech-
niques employed in this dissertation or ones inspired by them can easily be employed
in future prospective studies and offer good promise for future research to be carried
out.
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5.3 | Future Work
Through this study we have demonstrated that applying machine learning to USR and
USR-derived descriptors has the potential to improve virtual screening performance
over the Manhattan-distance measure that is used in the standard USR family of meth-
ods.

In view of this, the focus of any future work related to the research presented in
this dissertation should be to identify optimal machine learning techniques to use in the
USR-based virtual screening context.

One major limitation of LBVS processes is the difficulty of obtaining good results
when only a small number of active compounds are known. Our results clearly show
that the algorithms are the least effective when less that 9 actives are known. Efforts
have already been made in improving results when only one or a small number of refer-
ence compounds are available, for example using group fusion (Hert et al., 2005, 2006),
however this problem is also a shared one in other domains where machine learning
has proven useful. The problem of One-Shot Learning is that of categorisation of objects
when only one or a small number of training examples are available. This problem is
an important one in computer vision and several algorithms have been proposed in this
direction (Fei-Fei, 2006; Fei-Fei et al., 2006) and similar ideas have recently also been
applied to drug discovery (Altae-Tran et al., 2017).

The successful application of one-shot learning techniques to USR-derived descrip-
tors would be a significant improvement to this work, potentially making the process
more useful for the common problem of similarity searching with a small number of
search templates. One-shot learning should be a major avenue to be explored in future
research.

While we have made use of a simple neural network in our study, more advanced
neural network architectures, collectively known as deep neural networks or deep learn-
ing, have been proposed and used with success in a wide variety of domains such as
semantic parsing (Bordes et al., 2012), natural language processing (Mikolov et al., 2013),
computer vision (Cireşan et al., 2012a), transfer learning (Cireşan et al., 2012b) as well
as in virtual screening (Carpenter et al., 2018; Nasser et al., 2018; Xiao et al., 2018) where
excellent results have been obtained. The application of Deep Learning to USR-based
descriptors would be an interesting and potentially fruitful avenue to explore in future
studies.

Additionally, there is promising research that can be done in the direction of min-
imising the size of the USR descriptors, such as, for example, carrying out feature re-
duction using dimensionality reduction algorithms such as Primary Component Anal-
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ysis (PCA) or Linear Discriminant Analysis (LDA) as well as through deep learning ap-
proaches such as in Nasser et al. (2018). Reducing the size of the descriptors would have
large implications on the efficiency of the screening process, due to the large number of
conformers that need to be processed. Even a small reduction in descriptor size could
translate to a significant reduction in the size of the dataset that needs to be processed
by the algorithm.

5.4 | Final Remarks
To the best of our knowledge, this research project constitutes the first study to explore
the viability of several machine language algorithms in their application to the problem
of LBVS using USR and USR-derived descriptors.

We have demonstrated that USR-like descriptors are well suited to be used as train-
ing examples for machine learning algorithms, managing to obtain performance figures
in terms of Enrichment Factor and AUC well above the figures obtained by the standard
Manhattan Distance-based USR-based algorithms.

We have also explored the performance variations in the use of full conformer mod-
els as opposed to LECs as training input to our models, indicating that the use of LECs
can be a viable alternative that vastly reduces the volume of data that needs to be pro-
cessed, and hence the running time required to produce results. Nevertheless, our find-
ings indicate that the use of the full conformer models is more indicated when small
training sets are available, as better performance is preserved.

Additionally, we have explored the performance variation of the machine learning
models when trained on successively smaller active compound datasets so as to under-
stand the usefulness of the methods when applied to prospective screening scenarios
where only a small number of actives are known. In doing so, we have demonstrated
that the performance of the trained models is relatively stable at varying dataset sizes,
but that those trained with full conformers preserve better performance at low training
set sizes, therefore indicating that the use of full conformer models is indicated when
only a small number of actives is known.

This work, due to the sheer magnitude of options available when it comes to ma-
chine learning methods, must necessarily be considered to be simply a starting point
for further research into the topic of machine learning on USR descriptors. We believe,
however, that it makes a valid contribution to the field, as it demonstrates significant
performance improvements over the current state-of-the-art methods.

The fields of CADD and Virtual Screening are becoming increasingly important in
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today’s pharmacological industry as new, potentially life-saving drugs are developed
at an ever increasing pace. We are hopeful that our efforts will be extended further by
future researchers, so as to achieve further improved virtual screening performance and
make a concrete contribution not only within the academic sphere, but also to peoples’
lives.
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Further Background Information

A.1 | Atoms and Molecules
The atom is the smallest particle into which a chemical element can be divided while
preserving its chemical and physical properties. An element is defined as a substance
that is made up of only one type of atom.

Most of the mass of an atom is comprised of a central nucleus possessing a pos-
itive electrical charge. The nucleus is made up of two types of sub-atomic particles
- the positively charged Proton and the Neutron which is electrically neutral. These
particles are known as nucleons and they have a mass of approximately 1 atomic mass
unit or 1.66053906660× 10−27 kg. The nucleus is surrounded by a cloud of negatively
charged particles called Electrons and which are much less massive than the nucleons
(5.489× 10−4 atomic mass units). In general, the number of protons in an atom is equal
to the number of electrons, making the atom as a whole electrically neutral. It is possible
to have atoms with the same number of protons and electrons but with a different num-
ber of neutrons. These atoms have a different mass, however retain the same chemical
properties and they are referred to as isotopes. An atom can also lose or gain electrons
making it respectively positively or negatively charged. Atoms that have an unbalance
between electrons and protons are termed positive or negative Ions.

Various models have been proposed to describe the structure of the atom, however
the currently accepted one is largely based on that proposed by Neils Bohr in 1913 in
which he used Quantum Theory to describe the behaviour of electrons around the nu-
cleus. In the currently accepted model, the energy of the electrons is quantized, i.e. it
is not continuous in nature and can only take several well-defined values. This causes
the electrons around the nucleus to be arranged in shells or layers at differing distances
from the nucleus, the lower the energy, the smaller the distance. Each electron shell can
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only hold a fixed number of electrons and, in general, electrons move into more ener-
getic shells only if less energetic shells are already full. The number of electrons in the
outer shell determine the chemical properties of the element. The outer shell is known
as the valence shell and the number of electrons it contains is known as the valency of
the element and it determines the number of bonds to other atoms that the atom can
sustain.

Atoms can bind electrostatically to other atoms forming a new substance called a
compound having chemical properties distinct from any of the atoms making it up. There
are various types of chemical bonds that can occur between atoms, each having different
properties and different strengths and consisting of different mechanisms.

Some types of inter-atomic bonds occurring within a molecule are include the fol-
lowing:

� Covalent bonds. Two atoms can share one or more pairs of valence electrons
giving rise to a very strong bond. This is the most common type of bond that
occurs in organic chemistry.

� ionic bonds. In an ionic bond, one or more electrons moves from one atom to
another giving rise to two ions of opposite charge and resulting in an electromag-
netic attraction between them. This type of bond is less strong than a covalent
bond and occurs predominantly with metal or halogen atoms.

� metallic bonds. Due to the characteristics of heat and electrical conductivity pos-
sessed by metals, the bonds between atoms in a metal are characterised as being
akin to positive ions in a sea of electrons. The electrons act as "glue", keeping the
atoms together, however are able to move freely within the structure, giving rise
to the properties of conductivity in metals.

� Van der Waals forces. These are a set of weak forces that occur between atoms
as well as between molecules caused by permanent or temporary uneven distri-
bution of electrons around the atom or molecule. This causes the formation of an
electrical dipole, i.e. a separation of positive and negative charge over the atom or
molecule, allowing an attractive force to occur between atoms.

� Hydrogen bonds. These bonds occur between Hydrogen atoms that are already
bonded within a molecule and atoms in other molecules. They occur because
a bonded Hydrogen atom has a slight positive charge due to its single electron
being pulled away towards the bonded atom. This causes an attractive force be-
tween it and other bonded atoms that are negatively charged. This force in weak
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in isolation, however it is important in organic chemistry as it occurs in water, giv-
ing water some of its unique properties, and it is also important in stabilising the
structures of protein and DNA.

The strongest and most important bonds when it comes to the study of drug-like
small molecules are covalent and ionic bonds as they are the strongest. The shape of a
molecule is dependent on the pattern of bonds that occur between the atoms forming it.

The "backbone" of organic chemistry is the Carbon atom. Carbon has a valency of
4, meaning that it can sustain 4 bonds to other atoms simultaneously. Crucially, apart
from being able to bond to other elements such as Hydrogen, Oxygen, Nitrogen etc., it
can also bond to other carbon atoms, enabling the formation of structures such as chains
of arbitrary length, rings, tetrahedrons, and ball structures. This gives rise to an almost
infinite variety of molecules ranging from the simple carbon dioxide molecule, where a
single carbon atom binds to two Oxygen molecules (valency 2) forming two bonds with
each Oxygen atom, to the Deoxyribose Nucleic Acid (DNA) molecule, which encodes
all the information necessary to build a living organism.

The basic building blocks of life are compounds called amino-acids. About 500 dif-
ferent amino acids are known, out of which 20 are coded for in DNA. Amino-acids can
form long chains called polypeptide chains. Depending on the exact composition of a
polypeptide chain, it will fold into a definite shape forming a protein. Proteins are made
up of one or more polypeptide chains and perform a vast array of functions within a
living organism. Proteins can be regarded as catalysts - compounds that act as external
agents enabling or speeding up a chemical reaction. The specific shape of a given pro-
tein will catalyse a specific reaction within the organism, thus performing a given job.
Proteins are involved in DNA replication, transportation of molecules within a between
cells, and also as structural material for cells.

The process of building proteins in a living organism is governed by the sequence
of Nucleotides in the DNA molecule. Nucleotides are the building blocks of DNA. Four
nucleotides are used in DNA - Guanine, Thymine, Guanine and Cytosine. These nu-
cleotides are grouped in threes within DNA, each group of three called a codon, each
codon coding for a specific amino-acid. This scheme permits coding of a total of 43 = 64
amino-acids, however only 20 amino-acids are, in fact, produced as several codons en-
code for the same amino-acid.

The function of a protein within the organism depends almost exclusively on its
shape. The field of Drug Discovery deals with finding small molecules that are able
to bind with a given protein, in the process altering its shape and hence its function.
Proteins are capable of binding to other molecules through specific binding sites on
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their surface. The shape of the binding site dictates the shape of the molecule that is
capable of binding to it. This is Emil Fischer’s lock-and-key principle, as discussed in
Section. 2.1.

The challenge in finding such compounds is that molecules are not necessarily rigid
structures. Any single atomic bond within a molecule can allow rotation causing the
spatial relationship of the structures on either side of it to change, therefore changing
the shape of the entire molecule. This process also changes the molecule’s total energy
due to a different distribution of interatomic forces within the molecule having been
created.

Such configurations of a molecule that are stable are called conformers or conforma-
tional isomers. These stable conformations of the molecule will only occur at energy
minimums as a higher energy conformation will always relax into a lower energy one
when possible.

A.2 | Conformer Generation
In general a molecule can take a variety of stable shapes called conformations. This vari-
ety can be characterised as an n-dimensional conformational space where n is the number
of rotatable bonds in the molecule. Conformer generation is a process of searching this
conformational space in order to find stable conformers.

There are three major approaches to achieving this, which are:

� Systematic Search. This involves systematically varying each rotatable bond in
order to consider all possible shapes of the molecule. This is, however only feasible
for small molecules. An example of this approach is provided by the Confab tool,
part of the Open-Babel cheminformatics toolbox 1.

� Stochastic Sampling. The conformational space can be sampled randomly or
through directed stochastic techniques such as Monte Carlo approaches or ge-
netic algorithms. The Open-Babel toolbox supplies a genetic algorithm-based con-
former generation tool apart from the Confab tool mentioned above. The con-
former generation routines provided by RDKit are also stochastic in nature, ran-
domly generating atom positions between lower and upper bounds determined
by the atom connections and a set of predetermined rules.

� Knowledge-based approaches. This kind of approach uses experimentally-determined
rules about spatial relationships between different types of atoms in order to gen-

1http://openbabel.org [Last accessed 12/06/2019]
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erate conformers. RDKit provides a knowledge-based method of conformer gen-
eration called ETKDG. This uses experimentally determined rules in order to gen-
erate valid conformers.

A.2.0.1 | Energy Minimisation

With most conformer generation methods, the resulting conformers may not be perfect
and may not be located at an energy minimum, i.e. the net force on the atoms in their
generated positions might not be zero. In order to correct this, a procedure known
as energy minimisation is carried out. Defining E(r) as the energy of the molecule as a
function of the atom positions, energy minimisation iteratively minimises this function
by:

1. Calculate the force on each atom, i.e. − dE
dr

2. If the force is zero or within a pre-set threshold, stop

3. If not incrementally move the atoms by some amount ∆r in order to decrease the
force exerted on the atom.

4. repeat

A function minimisation algorithm such as gradient descent can be used to perform
this procedure, however in practice other algorithms specifically adapted to the task are
used as they give superior performance.

There are several methods of modelling E(r), however a common way of doing so is
by the use of a force field. A force field is a parameterised model of the molecule energy
expressed in terms of the bonded energy, i.e. the energy inherent in covalent and ionic
bonds between atoms, and of the non-bonded energy, due to forces such as the Van
der Waals force. These functions are used in conjunction with sets of parameters for
each type of atom and chemical bond, usually experimentally determined, in order to
calculate the energy of the molecule.

Performing an energy minimisation step will ensure the stability of the generated
conformer by effectively removing stresses introduced by the imperfect conformer gen-
eration algorithm.

Note that some conformer generation methods, such as ETKDG, do not need an
energy minimisation step, however if conformer energies are needed, these have to be
calculated based on a force field. In this case, energy minimisation based on the same
forcefield needs to be performed as, unless this is done, since the conformer generation
parameters will, in general, not match those of the force field, abnormally high energy
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values will result. In general however, these kinds of conformer generation algorithms
produce configurations that are very close to energy minima, and so the energy minimi-
sation step will tend to be relatively quick.
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