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Abstract—Computer Aided Drug Discovery is concerned with the algorithmic modelling of chemical interactions of bioactive
compounds on protein molecules with the aim of discovering new drugs. Ligand Based Virtual Screening is a branch thereof
concerned with using known active compounds to screen other unknown molecules for biological activity. Ultrafast Shape
Recognition(USR), along with its derivatives, are techniques that compress 3 dimensional information about molecular shape in order
to optimise comparisons between molecules. We explore the use of Machine Learning techniques for augmenting the performance of
USR so as to improve active compound detection as well as improve processing times. We detail the current state of the project as well

as outline the way forward.
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1 INTRODUCTION

HEMINFORMATICS is a multidisciplinary field of study
Cthat is concerned with applying techniques in statistics
and computer science to the study of biochemistry [1]. One of
the major goals of cheminformatics is that of discovering new
drugs by computational means, referred to as Computer-Aided
Drug Discovery or CADD. Virtual Screening (VS) is a method
of Computational Drug Discovery that has been receiving
increased attention [2]. The aim of this field is to streamline
the costly and time-consuming process of physically screening
new drug-like compounds for biological activity in the lab. By
computationally pre-screening compounds for those that are
most likely to exhibit such activity, laboratory screening time
can be drastically reduced [1]. Advances in processing power
and high-capacity storage as well as development of Big-Data
techniques has today made this process of computation optimi-
sation of compound screening feasible resulting in significant
savings of time and cost.

Virtual Screening techniques are divided into two main
categories: structure-based virtual screening (SBVS) and ligand-
based virtual screening (LBVS). SBVS focuses on using struc-
tural information about target proteins to find new compounds
complementary in shape to known protein binding sites [3],
[4]. LBVS, in contrast, assumes no prior knowledge about
protein properties. Instead it focuses on using known active
compounds known to bind to a given target protein (ligands) to
search for other similar compounds that have a high probability
of also being active against the same protein [5]. LBVS methods
can perform similarity matching based on a wide variety of
different properties of the ligands,, some techniques being
based on chemical properties while others on three dimensional
shape.

The underpinning for the idea of matching molecules of
similar shape is Emil Fischer’s lock and key hypothesis devised
in the 19th century. Fischer postulates that a molecule will
bind to a protein if it matches the shape of a binding site
on the protein like a key matching a lock [6] as illustrated
in Fig. 1. It therefore follows that molecules having a similar
shape should have a high probability of binding to the same
protein. The process of matching molecular shapes is, however,
computationally intensive because any single molecule can
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Fig. 1. A simple illustration of Fischer’s Lock-and-key principle (from
https://en.wikipedia.org/wiki/Docking_(molecular) ).

often take on different shapes depending on the arrangement of
chemical bonds between the atoms in the molecule. Molecules
can also be rotated relative to each other, making it necessary
to perform an initial alignment step before comparing their
shapes. Furthermore a ligand might take a different shape when
it is bound to a protein than when it is unbound [7].

Ultrafast Shape Recognition (USR) is an LBVS technique
which aims to get around the heavy computational require-
ments of molecule alignment for SBVS. The technique was
developed by Ballester et al. [8], [9] and it involves distilling
molecular shape into a descriptor vector made up of 12 dec-
imals. These descriptors are then compared directly using a
modified Manhattan distance metric, obviating the need for
considering molecule alignment. This method was developed
in 2007, however since then, extensions to this algorithm have
been proposed that augment the purely shape-based descrip-
tors of USR with other chemical properties of the molecule
such as Electroshape that uses atomic partial charges [10]
and USRCAT, using atom types [11], obtaining better virtual
screening scores than the basic USR algorithm.
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2 AIMS AND OBJECTIVES
21 Aims

The aim of this study is to augment the USR algorithm for
LBVS with ML techniques in order to boost its virtual screening
performance.

The dissertation will deal with three main scientific research
questions, namely:

1) Can machine-learning techniques be used instead of
naive Manhattan distance to improve Virtual Screening
performance based on USR and USR-derived descrip-
tors?

2) Can the USR descriptors be shortened while preserving
the predictive power of the method?

3) What is the minimal amount of data required to ade-
quately train the machine learning model?

The application of ML algorithms to the problem of USR
similarity matching constitutes a new approach to the problem
of virtual screening based on molecular shape and is therefore
a worthwhile avenue of research.

Furthermore, if, through ML, it is found to be possible to
shorten the USR descriptors to less than the nominal number of
elements with no decrease in performance, it would permit sig-
nificant decreases in storage requirements for large compound
databases.

The motivation for the third question is that it is always the
case that the number of known actives for a particular target
in LBVS is limited, therefore it is crucial to determine how the
effectiveness of a machine learning model applied to an LBVS
dataset varies with severely unbalanced training data and with
limited training examples.

2.2 Objectives

The objectives to be reached in order to achieve the aims of this
research are the following:

o To create an implementation of USR to serve as the
baseline against which to evaluate machine learning
models (henceforth, naive USR).

o To leverage the online chemical database known as the
Directory of Useful Decoys Enhanced (DUD-E) [12]
which has been created especially for the purpose of
evaluating LBVS methods.

o To modify naive USR, varying the length of the descrip-
tor and derive baseline performance measures of naive
USR vs. USR with modified descriptor length for a pre-
selected set of protein targets.

o To repeat the above experiments with the introduction
of various ML models, mapping out their performance
against the baseline of naive USR with various descrip-
tor lengths and protein targets.

o To identify an optimum machine learning model

o To repeat the above with other, better performing, USR-
derived descriptors

3 BACKGROUND AND LITERATURE REVIEW

Ligand Based Virtual Screening involves using one or more
molecules that are known to successfully bind to some tar-
get protein (ligands) as templates for finding other similar
molecules which have a high likelihood of binding to the
same protein. These template molecules are referred to as
active molecules, or actives. A dataset of unknown molecules is
then graded and ranked according to some similarity metric
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Fig. 2. Two molecular conformations of the butane molecule

compared to the active molecules. It is desirable that potentially
active molecules be graded highly so as to appear at the start
of the sorted list. This will ensure that subsequent laboratory
screening of the sorted molecules will find active ones as early
as possible in the process, resulting in reduced time and cost.
This is referred to as early enrichment.

When evaluating a LBVS technique, a dataset made up of
known actives along with, usually, a much larger number of
decoys is used. Decoys are compounds selected to be similar
to the active molecules in terms of physical properties such as
molecular weight and size, but also chemically distinct from
them so as to make them unlikely to bind with the target
protein. Using such a labelled dataset it is possible to evaluate
the results of the virtual screening process by the number of
known actives that have been graded towards the top of the
sorted list.

The most established method for LBVS is molecular fin-
gerprinting. This involves encoding a given set of molecular
properties into a fixed size bitmap, referred to as a molecular
fingerprint [13]. Similarity metrics, such as the Tanimoto simi-
larity index [14], are then applied on these fingerprints in order
to extract a measure of overlap between molecules [15], [16]. In
attempts to improve similarity scores, various researchers have
attempted to apply machine learning techniques to the problem
of similarity searching on these molecular fingerprints, with
varying results [16], [17], [18].

A different branch of LBVS is shape-based similarity search-
ing, or molecular shape comparison. This makes use of 3-
D molecular structural information to determine similarity
between molecules [19]. These techniques are known to yield
fewer matches than 2-D fingerprint methods [20], however the
matches they identify tend to be different to those found by
2-D fingerprints and therefore are useful nevertheless [19]. Ad-
ditionally, shape-based methods are also capable of performing
scaffold hopping, meaning that molecules having a similar shape
to an active, but composed of different elements can still be
picked up as highly similar. This can result in compounds
that show similar biological activity as a known active, while
circumventing issues such as patent restrictions [9].

Shape-matching methods have to deal with a considerable
problem that is not present in molecular fingerprinting tech-
niques, however. Molecules are, in general, not rigid structures
- atomic links that are not bound in ring configurations are free
to rotate allowing any given molecule to take a large number
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of different shapes, called conformations. The more rotatable
bonds the molecule contains, the more varied the conforma-
tions that the molecule can take (see Fig. 2). A molecule’s
conformer model does not alter its chemical properties, how-
ever a molecule will only bind within a protein active binding
site when it takes the correct shape to conform to it. This is
not a problem for fingerprinting methods because fingerprints
depend on the chemical properties of the molecule and not its
shape in three dimensions. For shape-based methods, however
this is a considerable challenge because for each molecule, a
large enough number of conformations to adequately sample
the molecule’s conformational space have to be mathematically
generated, causing an explosion in dataset size. The optimal
number of conformations to generate depends on the number
of rotatable bonds present in the molecule and guidelines in this
regard were proposed by Ebejer et al. [21]. It is clear that due to
the necessity of generating a large number of conformations it is
desirable for a shape-based technique to be as computationally
efficient as possible.

Shape-based approaches can be categorised into two main
groups: super-positional methods, and non super-positional
methods.

Super-positional methods attempt to optimally align molec-
ular structures in 3-D space in order to quantify overlaps
between molecular shape, taking into account forces between
atoms and the differing valid conformations of molecules.
These methods have the advantage of yielding good results,
however they are also much slower than fingerprinting tech-
niques. This is because they require the computationally inten-
sive optimum alignment of the molecules in 3-D space.

In contrast, non super-positional methods, attempt to use
molecular shape information in such a manner as to make
alignments unnecessary for similarity comparison. This nor-
mally involves pre-computing some set of descriptors from
the 3-D structure of the molecule. These approaches are faster
than super-positional approaches, but do not yield comparably
favourable results. A review of both types of methods is given
by Ballester in [9] and McGaughey [22].

In an effort to preserve the speed benefits of non super-
positional approaches and preserve the screening performance
of super-positional techniques, Ballester and Richards proposed
a novel non super-positional approach they named Ultrafast
Shape Recognition (USR) in 2007 [9], [8].

In their research, the authors point out that the shape of a
molecule can be encoded by taking the distance distributions
of each atom to four centroids located inside the molecule. The
centroid selection can be arbitrary, however the authors chose
four well-defined centroids as follows:

1) The molecular centroid (ctd)

2) The closest atom to the centroid (cst)

3) The furthest atom from the centroid (fct)
4) The furthest atom to fct (ftf)

This gives four separate distance distributions.

By making use of a result from statistics stating that a
distribution is completely determined by its moments [23], the
four distributions are then condensed into their respective first
three moments, corresponding to the mean, the variance and
the skewness. This results in a vector of 12 decimal values
for a given conformer. The authors propose using this vector
as a stand-in for the molecules 3-D structure in similarity
comparisons.

The performance of USR was evaluated formally by
Ballester et al in 2009 [24] by performing retrospective vir-
tual screening experiments comparing USR to a commercially
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available non-superpositional VS system called Eigenspectrum
Shape Fingerprints (ESshape3D) [25]. They generated a test
set from the DrugBank database by selecting 8 sets of ac-
tive molecules with respect to an unbiased variety of targets.
The Enrichment Factor at 1% comparing USR and ESshape3D
showed that USR performed better than ESshape3D, scoring an
average of 10.4 over the 8 selected targets, as compared to 6.6
scored by ESshape3D.

Other studies have compared the effectiveness of USR com-
pared to other shape-based methods [26] as well as finger-
print methods [20]. Comparison between different methods,
however, has proven to be problematic as there is no stan-
dard method for shape-based similarity comparisons. Ballester
points out [27] for example that in [20] USR is being compared
to ROCS [28], [29], a widely used shape similarity method based
on 3-D superposition, but ROCS is known to not consistently
identify similar molecules and therefore it is not correct to
compare USR to ROCS and attribute all the discrepancies to
USR. Apart from this [20] also compares the effectiveness of
USR to a host of other shape-based and fingerprint-based
methods using the Directory of Useful Decoys (DUD) database
[30]. The problem with this, however, is that the molecules in
DUD are categorised using fingerprint methods, and therefore
unsurprisingly, fingerprint methods achieve better benchmarks
in this paper than those achieved by shape-based methods.
Furthermore, shortcomings with the DUD when it comes to
its use in VS have been identified and a new, much improved
successor to the DUD, named DUD-Enhanced has been com-
piled in order to minimise these problems [12]. Retrospective
Virtual Screening studies have not yet been performed for USR
using the DUD-E.

Since the emergence of USR, other researchers have aug-
mented the purely shape-based information encoded within the
USR descriptors with other information relating to the chemical
and physical properties of the molecule. These modifications to
the basic USR technique have yielded considerable improve-
ments in early enrichment.

The first such enhancement, named Chiral Shape Recogni-
tion (CSR), was proposed by Armstrong et al. in 2009 [31]. They
proposed a modification to the centroid selection process in
USR to enable the algorithm to distinguish between enantiomers,
i.e. pairs of molecules that are mirror-images of each other.
In 2010, Armstrong et al. proposed ElectroShape, a further
extension of USR that incorporates CSR as well as information
about the electrostatic properties of the atomic bonds [10]. This
method resulted in a near doubling of enrichment ratio at 1%
over USR. A different extension to USR named USRCAT was
proposed in 2012 by Schreyer et al. [11] which was imple-
mented as part of the CREDO Structural Interatomics database
and combines the pure shape information of USR with informa-
tion about the atom types making up the molecule. This method
obtained performance scores comparable to ElectroShape when
evaluated over the DUD-E database.

4 METHODOLOGY

We will carry out a series of retrospective virtual screening
experiments based on several Machine Learning algorithms
and on both naive USR descriptors as well as Electroshape
descriptors. We chose to implement ElectroShape in preference
to the other USR-derived algorithms because it gives state of
the art results at a relatively low cost in increased complexity.
USRCAT gives comparable results, however it is more complex
to implement and necessitates access to the CREDO database,
which is not freely available.
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In order achieve these goals, there are three main top-level
tasks that need to be performed.

1) Conformer generation for a variety of target proteins.

2) Implementation of a test harness to execute and evalu-
ate different algorithms in a uniform manner.

3) Implementation of Machine Learning-based similarity
functions to be evaluated.

Conformer generation will be performed once as a pre-
processing step to generate the datasets that will be needed for
the retrospective screening experiments. A variety of protein
targets will be chosen to match as closely as possible the
existing literature. The DUD-E datasets for the chosen proteins
will then be processed using the open-source RdKit [32] library
to generate conformers for each compound according to the
guidelines in [21]. These conformers will then be used to
generate several datasets with USR descriptors, ElectroShape
descriptors and abbreviated versions of each type of descriptor
using fewer moments and fewer USR reference points, in order
to explore the second research question.

The test harness will provide a pluggable architecture for
testing and evaluating VS algorithms. It will feed the datasets
resulting from the conformer generation step to a given simi-
larity metric and evaluate the resulting ranked results.

4.1 Dataset

The VS datasets that will be used will be selected from the
Directory of Useful Decoys-Enhanced (DUD-E). The DUD-E
provides chemical compound datasets for use in retrospective
screening runs with a total of 22,886 active compounds against
102 target proteins as well as corresponding decoy molecules
with a ratio of 50 decoys to each active.

The actives and decoys for each protein are provided in
the DUD-E in standard Simplified Molecular-Input Line-Entry
System (SMILES) format [33]. SMILES is a way of encoding
the chemical structure of a molecule in string format and it is
parsed natively by the RDKit library.

From every SMILES molecule representation, RDKit
molecule objects can be created through which valid confor-
mations for the molecule can be calculated. These can then, in
turn, be used to generate USR and ElectroShape descriptors to
be used as features for Machine Learning.

5 EVALUATION

There are several evaluation methods that can be used for
virtual screening studies [34], [35], however two are most com-
monly used in the literature - Receiver Operating Characteristic
(ROC) curves [36] and the Enrichment Factor. Enrichment is
defined as the number of actives ranked within a threshold,
commonly within the top 1% or 5%, expressed as a ratio to the
number of actives that would be found by chance, i.e. if A% g
the number of actives ranked in the top x% of the sorted dataset
and C*% is the number of compounds in the top x%, A is the
total number of actives in the dataset and C is the total number
of compounds, then,

Az%/cz%
A/C

Clearly, the EF depends directly on the ratio of actives to decoys
in the entire dataset and therefore in order to compare VS scores
meaningfully, one must do so for VS runs on the same dataset.
This is a problem in the VS literature as, in general, it is difficult
to compare methodologies across studies in this way. In this
study, we will make sure to preserve the active/decoy ratio in
order to compare performances meaninfgully.

EF™% = 1)

6 CURRENT PROGRESS

A considerable amount of background research has already
been done on the topic of Cheminformatics in general and
virtual screening in particular leading to the implementation
of several proof of concept ideas as described in this section.

6.0.1 Conformer and Descriptor Generation

The pre-processing for conformer generation and descriptor
generation was implemented in Python using the RDKit li-
brary and custom code to generate the USR descriptors. USR
descriptors and total energy for each conformer are generated
as well as the number of rotatable bonds in the molecule by
the pre-processing step. This process was designed to use a
map/reduce paradigm in order to make it easily migratable to
a distributed platform such as Hadoop or Spark when taking it
beyond a proof of concept phase. This will be necessary due to
the large volume of data involved, which is of the order to 10G
per protein target.

Using this process we are in the process of generating
datasets for seven diverse protein targets being chosen to be
as similar as possible to those used in [24]. These can be used
as training data for machine learning models.

6.0.2 Machine Learning Experiments

From a machine learning perspective, a USR descriptor dataset
can be regarded as an unbalanced dataset with binary labels,
i.e. "active” and "decoy”. We can train a wide variety of super-
vised machine learning algorithms using such data, effectively
making full use of the information present in the active samples
as well as in the decoys.

In real-life scenarios, however, it is not always the case that a
full library of active and decoy compounds is available to train
a supervised model. In traditional retrospective virtual screen-
ing processes, in fact, decoys are only used as a way to evaluate
the performance of the method and only information related to
the active compounds governs the classification process.

Now, as described by Ballester in [24], taking the set of
conformers of all active ligands for a given protein and clus-
tering them based on shape will reveal well defined centroids
corresponding to the possible binding sites of the protein. Com-
paring test compounds to these centroids would be effectively
finding compounds that match the shapes of the protein’s
binding pockets. This is an unsupervised clustering problem.

We want to use a machine learning method that could be
applied in both supervised mode using binary labels on all the
available data as well as in a manner that replicates traditional
retrospective virtual screening, being trained exclusively on
active compounds in an unsupervised manner.

An ideal machine learning algorithm to use in this situation
is the Gaussian Mixture Model (GMM) [37]. GMMSs are an
unsupervised algorithm that models data points as mixtures
of weighted Gaussian distributions, i.e. given the definition of
the Gaussian distribution in D dimensions as
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a Gaussian mixture with M components is given by:

M
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k=1
where ¢, is the weight assigned to component k. Thus, the
parameters associated with GMM M with N components are
i1, a vector of N means, 2, a NxzN covariance matrix and ¢ a
vector of the NV weights associated with the NV Gaussians.
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Fig. 3. A plot of a simple 1-D Gaussian Mixture Model.

A simple example of a plotted 1-D GMM with two compo-
nents is shown in Fig. 3

The GMM parameters have to be learned from the input
data and this is done using an iterative algorithm called Ex-
pectation Maximisation. The algorithm starts by assigning initial
values to the Gaussian parameters. These could be random,
but they are generally assigned using the k-means clustering
algorithm on the data points. Once initial values are set, two
steps, analogous to the k-means algorithm are repeated until
convergence:

o E-Step: evaluate the responsibilities of every component
using the current parameter values, i.e. which Gaussian
is responsible for each sample.

o M-Step: re-estimate the Gaussian parameters given the
current responsibilities on the samples.

The major hyper-parameter that has to be tuned in a GMM
is the number of Gaussian components to be used in the model.
This can be expensive to determine, and is usually found
empirically by a grid-search process. In [38], however, the
authors determine that the number of rotatable bonds between
two atoms is a good value use as the number of components of
the GMM describing the distance distribution between those
two atoms. This enables them to side-step the necessity for
the hyper-parameter tuning step, obtaining a large reduction
in running time.

The effectiveness of a GMM also depends on the constraints
placed upon X, the covaraiance matrix. Putting no constraints
on ¥ maximises the GMM’s expressive power, however also
involves heavy computation. In most cases, ¥ is constrained
to be a diagonal matrix, resulting in lighter computational
requirements while sacrificing some accuracy in the model. This
can be compensated for, however, by using more components
and for this reason, much of the results present in the literature
assume diagonal ¥

GMMs are used extensively in speech processing, where
they are used to classify sound samples against trained
phoneme models, however they have also been used in virtual
screening and protein-ligand docking [28], [29], [38], [39]. It is
possible to use GMMs to classify samples in both a supervised
as well as an unsupervised manner.

While GMMs are essentially an unsupervised probabilistic
clustering technique, it is possible to employ them as super-
vised models by training multiple GMMSs, one per label, and
classify test data by Maximum A-Posteriori (MAP) estimation
on the outputs of all the GMMs. ie. in this case we train
one GMM on the active conformers and one on the decoys.
New compounds to be classified are evaluated on both, giving
an average log likelihood value over all the test compound
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conformers for each GMM. Thus the test compound is classified
by the label corresponding to the GMM that gives the largest
average log likelihood.

This gives us a binary active/non-active classification, how-
ever we need a ordered ranking of compounds in order to
estimate early enrichment. In order to obtain this for each test
compound we took the difference between the log likelihood
against the active GMM and that against the decoy GMM. The
rationale behind this being to highly rank compounds with a
much higher likelihood of being actives than decoys. We then
calculated ROC/AUC metrics and enrichment factor based on
this ranking.

To date we have applied this scheme to one protein target
(Adenosine A2a receptor (GPCR)) obtaining AUC scores of 0.91
and and Enrichment factor at 1% of 49, which is close to a
theoretical maximum given the DUD-E active/decoy ratio of
1:50.

In order to use GMMs in unsupervised mode, emulating
more closely a traditional retrospective virtual screening exper-
iment, we only train a GMM on the active compounds for a
protein and evaluate the log likelihood of the test compounds
only on the active GMM, using this value to rank the com-
pounds.

The AUC obtained for the same protein using this scheme
was 0.80 with an enrichment at 1% of 40. As expected, this is
a lower score than for the supervised method, however is is
nevertheless an excellent result.

In order to directly compare our performance to Ballester’s
original algorithm, we need to run the retrospective screening
experiment using pure USR on the same targets, however.
Due to the big data nature of the problem, to date we have
not obtained this result over the entire set of conformers for
these target proteins but only for a limited subset of 10 actives
preserving the active/decoy ratio, giving an enrichment factor
at 1% of 19. This value is clearly preliminary, however it is to
be noted that the use of GMMs has made it possible to run the
VS experiment in a fraction of the time that it takes to perform
using USR alone, and producing excellent results. This is very
encouraging.

On a related avenue, we are also exploring a different way of
using GMMs for similarity matching of molecules over variable
conformational states, taking an approach similar to that of
Jahn et al. in [38] and [39]. In their research the authors build
a similarity metric between molecules by encoding molecule
distances under varying rotational angles of rotatable bonds as
GMMs and estimating the similarity by computing the overlap
between GMMs using the Expected Likelihood kernel function
[40].

In our approach we encode each compound in the dataset
as a GMM with the intention of comparing the GMM models of
two compounds rather than all their conformers separately, po-
tentially resulting in large time savings. We have experimented
with several similarity functions between GMMs and to date
the best results were given by that proposed by Zhou et al. in
[41] giving enrichment at 1% of 42 and a deceptively low AUC
of 0.58. Research about GMM similarity metrics is still ongoing.

7 CONCLUSION

This report presented the ongoing research in pursuit of the
aims outlined in section 2.1. A good amount of groundwork
has already been completed, and some initial results that were
obtained were very encouraging, however, more research about
the performance of several GMM similarity functions still needs
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to be done. The next step will be to consider Electroshape de-
scriptors along with pure USR as well as initiating explorations
regarding to research questions 2 and 3. Prior to this, however,
processing will have to be moved to the cloud in order to
handle the massive amount of processing that will be required
to generate datasets from all the target proteins.

A plan for the remaining work is presented in Appendix A.
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