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ABSTRACT
Protein annotation is the process of describing the function or
functions of a given sequence. Technological advances in sequenc-
ing gave rise to an unprecedented scale of unannotated proteins.
Through annotations biologists can understand better, the workings
of organisms. The high quality experimental annotations entail a
laborious and costly process. Mismatch in sequencing and annota-
tion rates highlights the need of an automated large-scale process
to annotate proteins with high reliability. Protein ancestry (homol-
ogy) is not a reliable indicator of the protein function. Homologues
can have high sequence similarity and yet different functionality.
Moonlight proteins are yet another challenge, whereby one protein
performs multiple functions. This work aims to investigate pro-
tein features and employ bioinformatics tools to build a feature set
for reliable function prediction. The performance of the proposed
system will be evaluated against CAFA.
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1 INTRODUCTION
Proteins are composed of linear chains of amino acids connected
by peptide bonds. Amino acids are composed of small molecules
with a common backbone (C, H, O and N) and a side chain of
up to 30 more atoms (C, H, O, N, and S) [22]. There are twenty
naturally occurring amino acids that make up protein sequences.
Protein sequences fold up into 3D structures that give the protein
its functionality [13]. Lesk [18] details four structural levels of a
protein, that are illustrated in Figure 1.

Figure 1: The four levels of proteins structure reproduced
from 1

1https://courses.lumenlearning.com/microbiology/chapter/proteins/

Figure 2: Growth of the number of protein sequences in
UniProt databases. UniProt TrEMBL is illustrated using the
blue line. The drop in TrEMBL growth is linked to the imple-
mentation of Proteome Redundancy Minimization (PRM)
implemented on March 2015 [8]

A protein is composed of one or more structures called domains
that form the functionality block of the protein. Proteins that per-
form multiple functions are called multi-domain proteins [10].

Advancements in sequencing technology is improving the ef-
ficiency, availability and affordability of genomic sequencing ma-
chines. Biological sequences are submitted tomolecular databases to
be catalogued and analysed. Laboratory experiments are required
to determine the functionality of a protein within an organism.
However this process is costly and time consuming [17]. The anno-
tation process entails attaching experiment outcomes in biological
databases.

The low throughput of experimental curation is evident with
the growth experienced by biological databases. In 2013, the data
repositories managed by European Bioinformatics Institute (EBI)
required 18 petabytes, increasing more than two fold in a year to
reach 40 petabytes [16]. This trend is also visible across UniProt
databases. Uniprot is a collection of protein sequences and func-
tional annotation. Figure 2, illustrates the growth experienced by
UniProt databases between 2010 and 2016. The gradient of individ-
ual curves shows that the databases are growing at an increasing
rate.

1

https://courses.lumenlearning.com/microbiology/chapter/proteins/


UniProtKB database is divided into two sections, the manually
annotated section “Swiss-Prot” and the automatically annotated
section “TrEMBL” [8]. In October 2017, for Homo sapiens organism,
Swiss-prot contained 20,237 sequences whilst TrEMBL contained
140,126 sequences. Consequently only 14.4% of the Homo sapiens
sequences are experimentally annotated. The difference in the an-
notation rate and the rapidly increasing number of unannotated
sequences, means that most of the sequences will have a predicted
role. This has made protein function prediction a central aspect
within computational biology [23].

The efficiency in genomic sequencing is resulting in accumu-
lation of unannotated sequences. The ability to map protein se-
quences to functionality would unlock better understanding of
organisms. Within drug design and development, it would enable
medicinals to target specific proteins reducing side effects [3].

The necessity to identify the function of a sequence gave rise to
a number of approaches to identify protein function. The rationale
being, to give the sequence a predicted role till it is laboratory
verified or changed.

An approach to assign functionality, is to utilise conserved re-
gions within the protein sequence. Conserved regions within pro-
tein sequences implies ancestry. The ancestry link between se-
quences can be used to transfer functionality between sequences.
This technique leverages on annotations of similar sequences to
determine the function of a sequence. However this technique is
not reliable with low sequence similarity [27].

Machine learning (ML) techniques enable systems to learn from
the data. The performance of ML techniques depends on the fea-
tures and data available. ML has been utilised in bioinformatics,
where the output is the protein function and in some cases the pre-
diction confidence [1]. Predicted protein functions are annotated
in biological databases clearly marking the annotation origin.

2 MOTIVATION
Protein function prediction is a central problem within bioinformat-
ics. To date there is no protein function prediction technique that
can replace high quality experimental annotations. Annotations
are the mechanism used store protein sequence functionality and
related evidence in biological databases. This research exploits bioin-
formatics computational methods and machine learning techniques
to predict protein function. Generated predictions (annotations)
will be utilised to hint researchers the functionality of a given se-
quence. Protein function prediction is a complex problem. Sequence
similarity determines ancestry relationship between genes through
conserved regions. Homology relationship cannot be used to trans-
fer functionality, as in the case of paralogues and moonlighting
proteins.

3 AIMS AND OBJECTIVES
The aim of this research is to perform protein function prediction
of a given protein sequence. The defined aim will be achieved by
fulfilling the following objectives:

(1) Develop a scalable web enabled platform through which a
user can input protein sequences and visualise results

(2) Identify protein features that enable accurate protein func-
tion prediction

(3) Build a pipeline with the required bioinformatics tools to
generate required features

(4) Utilise CAFA evaluation metrics to enable comparison with
other solutions

4 BACKGROUND RESEARCH AND
LITERATURE REVIEW

Two species can be linked together if they have common features,
for example adaption to a specific environmental condition. In
bioinformatics, gene homology is divided into two subclasses, par-
alogues and orthologues. Paralogues are genes linked through gene
duplication whilst orthologues are genes related through specia-
tion. Within the evolutionary context, these two subclasses have
different endings. Paralogues have duplicate functionality and con-
sequently in the long term they either diverge functionality or are
lost. On the other hand orthologues tend to take the function of
their precursor and thus are conserved [9, 24].

Moonlighting proteins are a class of multi functional proteins
in which a single protein performs multiple functions. Essentially
moonlighting proteins can be structurally described as proteins
that has two biochemical functions in one peptide chain [14]. These
proteins are found in different organisms including mammals, bac-
teria and archaea [12, 14]. MoonProt is a database of moonlighting
proteins that contains information about 270 moonlighting proteins
and related evidence 2. Moonlighting complicates function predic-
tion due to two aspects. First, there is evidence that homologues of
moonlighting proteins may not exhibit moonlighting. Consequently
function prediction techniques using homology might fail [12, 14].
Secondly, there is no single tool that identifies all functions of a
given moonlighting proteins [14].

With the work being performed on sequences, biologists are
acknowledging the fact that one gene universe exists [2]. Organism
specific databases classify proteins using a classification or hierar-
chy oriented towards the target organism. Organism specificity in
describing proteins hinders the ability to ask organism independent
questions [5].

The Gene Ontology(GO) initiative by the Gene Ontology Con-
sortium has three main aims [6]:

(1) Develop ontologies to describe molecular biology
(2) Apply GO ontologies to biological databases.
(3) Publish ontologies to enable universal access

GO defines three non-overlapping ontologies [2, 5, 6]:
(1) Biological Process describes the series of events or molec-

ular functions.
(2) Cellular Component describe locations, at the level of sub-

cellular structures and macromolecular complexes.
(3) Molecular Function describes the basic abilities at molec-

ular level.
The GO is defined as a directed acyclic graph (DAG) whereby

a vertex represents a term and an edge defines the relationship
between the terms. In the DAG, a vertex representing a term
can have multiple parents. GO terms are structured to sup-
port “is_a” (subtype of), “part_of” (subcomponents of parent),

2http://moonlightingproteins.org/
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Figure 3: GO DAG of different terms, adapted from 3
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Figure 4: GO DAG with the D-Value computed for all nodes,
using the methodology defined by Zhang et al. [26]

.

regulates (necessarily-regulates), “positively_regulates”, “nega-
tively_regulates” and “has_part” (necessarily part of) relationships.
The GO follows the “True Path Rule” whereby the path between
term and the ontology root must always be true [6, 7]. Figure 3,
illustrates the GO DAGs’ generated for three GO terms within
different ontologies.

Annotation is the process of storing the results of a prediction al-
gorithm or an experiment using the appropriate GO terms. For each
attributed GO term, evidence supporting citations together with
the evidence code must be provided. The evidence code, enables
biologists to determine the annotation quality. High quality anno-
tations originate from experimental evidence whilst annotation
obtained through automatic methods are less reliable [6].

3https://www.ebi.ac.uk/QuickGO/

Within bioinformatics protein similarity is utilised for different
reasons including finding proteins that have the same function and
determining the performance of a predictor. For a given protein the
true GO term is tb whilst the predicted term is t4. Figure 4 illustrates
the DAG including terms t4 and tb . Term tb is more specific than t4
as it occurs at a deeper level in the DAG. The following subsection,
tackles metrics proposed to quantify and compare the similarity of
protein sequences.

4.1 Semantic Similarity
Protein function similarity metrics has been the motivation of vari-
ous researchers that tackle the problem from different perspectives.
Mazandu et al. [19], categorises these efforts into three main cate-
gories:

(1) Information content metrics computed on either annota-
tions or ontology structure

(2) Term Semantic Similarity metrics computed on either
terms, edges or both

(3) Functional similarity metrics computed using ontology
structure or protein annotations

Information content (IC) measures computes similarity values us-
ing an annotation dataset. The IC value is dependent on the dataset
utilised. Similarly, topology based IC computations are susceptible
to GO structural changes as new terms are added and deprecated
ones are removed [19].

Zhang et al. [26], proposed Gene functional similarity search tool
(GFSST).Within GFSST, each node is assigned D-value (Distribution
value), for each node it is computed as the sum of incoming links
divided by the total number of nodes in the DAG. Comparison rules
define the D-value of two genes having multiple terms as the mean
D-value of the common terms.

Figure 4, illustrates the computed D-value for a DAG graph. For
a given sequence the predicted term is t4 whilst the actual term is
tb . Considering all the paths from the root node t0 to t4 (t0, t1, t2
and t4) and from t0 to tb (t0, t2, t5 and tb ). The common terms from
the two sets are extracted (t0 and t2) and the minimum D-Value
( 412 ) is the value of the metric.

The work proposed byWang et al. [25] uses a different technique
to compute the node S-Value (similarity value). The starting node
is given S-Value of 1, for the child nodes, the weight of the node
is the edge weights (0.8 for “is_a” and 0.6 for “part_of”) multiplied
by maximum node weight. The comparison between two genes is
summation of the maximum S-Value of each GO term of G1 against
G2 and each GO term of G2 against G1. Through this approach, all
the nodes in the sub graph are considered.

Subsequently Mazandu and Mulder [20] proposed a topology
based similarity metric based (GO-UNIVERSAL) aimed to address
the issue of depth within the GO DAG. The similarity computa-
tion performed within GO-UNIVERSAL considers the depth of the
term, whereby higher terms are generic whilst deeper terms are
more specific. Within GO-UNIVERSAL for each node two values
are computed, the topological position and topological information
which in turn is a function of topological position. The informa-
tion content score for each node is computed using the topological
information. A GO term similarity score between two terms is com-
puted using information content of the two terms. Gene similarity
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functionality iterates over the GO terms of the gene and computes
a similarity score.

The work by Clark and Radivojac [4], proposes a framework that
models a Bayesian network with prior distributions on the GODAG.
The computation of prior distributions, references a database of
annotated proteins such as Swiss-Prot. Using the annotations found
in the dataset, marginal probabilities and information content for
each term is computed using Equation 1.

The “information accretion” is utilised to compute two metrics,
namely remaining uncertainty and misinformation in defined in
Equations 2,3 respectively. The remaining uncertainty is informa-
tion that is yet to be predicted when compared to the true positive
set. Whilst the “misinformation” is terms that were incorrectly pre-
dicted. To facilitate ranking and evaluation of function prediction
methods these metrics are combined into “Semantic distance” de-
fined in Equation 4. “Semantic distance” is the minimum distance
between the origin and the curve (ruk (τ )+mik (τ ))τ . The preferred
distance metric is Euclidean distance attained by using k = 2.

ia(v) =
∑
v ∈T

loд
1

Pr (v |P(v)) (1)

ru(T , P) =
∑

v ∈T−P
ia(v) (2)

mi(T , P) =
∑

v ∈P−T
ia(v) (3)

Sk =min
τ

(ruk (τ ) +mik (τ ))
1
k (4)

where v is a node in the graph, P(v) is the set of parent nodes of v,
T is the true positive sub graph and P is the predicted function sub
graph.

4.2 CAFA evaluation
CAFA evaluation utilises set based and information theoretic met-
rics based on Equations 2,3,4 [15]. Set based metrics are computed
using Equations 5,6,7, whilst information theoretic using Equa-
tions 8,9,10. The performance of CAFA submissions is evaluated
using Fmax and Smin .

pr (τ ) = 1
m(τ )

m(τ )∑
i=1

∑
f 1(f ∈ Pi (τ ) ∧ f ∈ Ti )∑

f 1(f ∈ Pi (τ ))
(5)

rc(τ ) = 1
ne

ne∑
i=1

∑
f 1(f ∈ Pi (τ ) ∧ f ∈ Ti (t))∑

f 1(f ∈ Ti (t))
(6)

Fmax =max
τ

2.pr (τ ).rc(τ )
pr (τ ) + rc(τ ) (7)

ru(τ ) = 1
ne

ne∑
i=1

∑
f

ic(f ).1.(f < Pi (τ ) ∧ f ∈ Ti ) (8)

mi(τ ) = 1
ne

ne∑
i=1

∑
f

ic(f ).1.(f ∈ Pi (τ ) ∧ f < Ti ) (9)

Smin =min
τ

√
ru(τ )2 +mi(τ )2 (10)

where Pi (τ ) is the set predicted with a score that are greater than
or equal to τ for a protein sequence, Ti is the true positive set the
sequence,m(τ ) is the number of sequences with at least one score

Figure 5: Proposed research architecture

greater than or equal to τ , 1 is the indicator function that returns 1
when the condition is true otherwise 0, ne is the number of targets
in evaluation, ic(f ) is the information content for term f and τ a
value for 0.01 to 1.00 incremented by 0.01.

The next section details the proposed solution and work per-
formed.

5 PROPOSED SOLUTION
This section tackles the practical aspect of this research. It details
the work carried out, high level solution, dataset, hardware and
software requirements.

5.1 DataSet
In the initial phases, a dataset was required to understand the data
and develop the require software. Dr. Lees 4 fromUniversity College
London (UCL) made available a CAFA representative dataset.

The dataset contains 3,293,750 domains originating from 31,097
sequences. Within the dataset there are 6,388 unique GO terms.
Each domain entry is described with sixty attributes including GO
term, sequence name, protein disorder metrics, pFAM to GO term,
prediction of cleavage sites and transmembrane helices, ancestry
taxa, mmseq2 scores (many to many mapping) and CATH, PFam,
PFam funfam metrics.

This research uses additional data sources including UniProt [8]
and CATH [21] for verification and dataset enrichment purposes.

5.2 Method
The problem being tackled is a supervised multi-class classification
machine learning problem. Whereby each instance in the “train-
ing” dataset is labelled with the respective GO term. The number
of classes (GO terms) in the dataset is 6,388 classes, making the
problem a multi-class one.

The development and prototyping will be carried out on a desk-
top system. However, processing the full dataset requires a larger
infrastructure. The plan is to develop software in a modular archi-
tecture, to enable deployment on a distributed architecture. The
main components illustrated in Figure 5 entail:

(1) a graph database back end to store the Gene Ontology (GO)
structure

(2) python back end code that comprises of:
(a) feature generation for input proteins

4https://github.com/jonglees
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Figure 6: GO DAG for term “GO:0048731” in visualiser pro-
totype developed

(b) machine learning core to perform predictions
(c) computation of information theoretic metrics

(3) front end to interact with user and visualise results
Python was selected as the main language for this work as it

provides the required libraries and tools. The graph database was
required to act as a repository for hierarchical relationships between
the different GO terms. For this research Neo4j community edition
was utilised as it full fills the requirements. SQLite will be used to
persist Pandas dataframes. The research solution will be developed
and deployed on Linux operating system running Ubuntu 16.04
distribution. All the software developed will be versioned in Git
including LATEX documents.

5.3 Ongoing work
Building on the knowledge acquired in Section 4, a number of tasks
and experiments were performed.

The dataset provided by Dr. Lees from UCL was processed using
a Python utility to generate the “training” and “testing” datasets.
From the provided dataset, sequences were randomly selected until
the number of domains exceeded 5,000. The selected entries were
written to file. This process is repeated to generate the “training”
and “testing” datasets.

The initial efforts focused on understanding the data set. For
this purpose RapidMiner 5 was utilised to prototype the machine
learning pipeline. The following steps were performed:

(1) Read the training and testing datasets
(2) Train RandomForest Classifier using entropy as split criteria
(3) For n between 1 and number of features in the dataset
(a) Select n top important features from classifier
(b) Amend datasets to include only selected features
(c) Train RandomForest Classifier using k-folds cross valida-

tion (k=10)
(d) Measure accuracy using test dataset

5https://rapidminer.com/

Table 1: GO ontology statistics

Ontology No. of terms No. of edges No. of paths

Biological Process 28,431 69,222 4,617,763
Cellular Component 3,895 7,318 208,144
Molecular Function 10,015 12,227 23,477

Table 2: CAFA aligned dataset from UCL

Taxa No. of families No. of sequences

Archaea 2 2,457
Bacteria 6 107,711
Eukaryote 12 3,183,582

Table 3: CAFA2 dataset details

CAFA2
Taxa No. of families No. of sequences

Archaea 7 3,291
Bacteria 10 15,451
Eukaryote 10 82,074

The RapidMiner prototype attained the best accuracy of 71% when
using two features. Following prototyping, the ML pipeline was
implemented in Python. The accuracy attained from the Python
implementation was 71.4% which is inline with the RapidMiner
prototype. In preparation for the evaluation, information theoretic
metrics were implemented. Further work is ongoing to understand
and select the appropriate features from the dataset.

Gene Ontology Consortium provides ontology downloads in
two formats, OBO and MySQL dump. For this research the MySQL
dump was utilised. A Python utility was developed to read the
relational data from MySQL and populate the Neo4j graph database.
A random sample of GO terms were selected and verified against
QuickGO 6 to validate the loading process. The Neo4j database was
analysed to determine some basic statistics of the ontologies, that
are reported in Table 1.

The GO visualiser has two main components. The front end is a
website developed using Bootstrap, Cytoscape and jQuery. The back
end is a web server and REST service developed in Python. From
the web page, the user can search for GO terms. For a particular
GO search, a REST call is performed to the back end service via
AJAX and in turn the back end responds with a JSON document
representing the DAG for the GO term. Figure 6 illustrates the
GO map for GO term “GO:0048731” rendered in the developed
prototype. The visualisation uses different edge colours to highlight
edge types (“is_a” and “part_of”) that connect GO terms.

The dataset was enriched with sequence information from
UniProt to include sequence name and organism information. This
additional information enabled classification per taxa as per Table 2
and comparison of taxa with CAFA2 dataset as per Table 3. The
GO terms in the dataset were queried in Neo4j to determine the

6https://www.ebi.ac.uk/QuickGO/
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Table 4: CAFA2 best performance metrics

Ontology Fmax Smin

Biological Process 0.38 17.5
Cellular Component 0.46 4.5
Molecular Function 0.60 6.2

ontology. The 6,388 GO terms present in the test dataset originate
from the Molecular Function ontology.

6 EVALUATION PLAN
Evaluation of protein function prediction tools is not a trivial task.
Given an unknown protein, the system will perform function pre-
dictions, one for each domain in the sequence. These annotations
must be compared with the “gold standard” to determine system
performance. “Gold standard” annotations are obtained from labo-
rious expensive laboratory experimentation. In case a protein has
just been discovered, “gold standard” annotation will be unavailable.
Consequently, the performance of the system cannot be measured
on this new protein.

The proposed work will be evaluated using the Critical Assess-
ment of protein Function Annotation (CAFA) methodologies. CAFA
is a competition to evaluate the current state of computation protein
function prediction. Two CAFA challenges have been completed,
namely CAFA1 (2010-2011) [22] and CAFA2 (2013-2014) [15] whilst
CAFA3 is currently in progress. CAFA is organised every three
years. The competition has three phases, the first phase a number
of unannotated sequences are given the community. In the pre-
diction phase, the community has 4 months to analyse the data
and submit predictions. During the second phase, the competition
waits for nine months for proteins to be experientially annotated.
After the nine months, the assessment phase is performed. The
protein annotations are extract from Swiss-Prot and submissions
performance is assessed [11].

This work will be evaluated using CAFA2 methodology and
through literature comparison with other solutions. The CAFA2
dataset will be utilised and is publicly available from 7. Utilising
CAFA dataset and methodology will provide a robust evaluation
platform. Table 4, reports the performance metrics of the best per-
forming CAFA2 submission per ontology [15].

7 CONCLUSION
The number of protein sequences is accumulating at an
ever-increasing rate in biological databases, such as UniProt.
Determining the function of a given protein is a central aspect of
understanding organisms and drug design. Experimental labora-
tory curation is required to determine protein function however,
this process is laborious and costly. The protein functions of a
given sequence are stored in biological databases as annotations
with related evidence. A stop-gap solution is the utilisation of
computational techniques to determine protein function. Predicted
functions are annotated in databases using the GO terms and
supporting evidence.

7http://biofunctionprediction.org/cafa/

This work leverages bioinformatics tools and machine learning
techniques to perform protein function prediction. This work will
be evaluated against CAFA submissions in terms of performance,
whereby the best results per ontology are reported in Table 4. This
work will be scheduled as per schedule available in Figure 7.
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A PROJECT TIME LINE
The project plan for this research is detailed in Figure 7. The work is being carried out on part-time basis for a period of a year. On completion,
the research will be presented as the dissertation for a masters level in Artificial Intelligence. Work will be tracked via the regular meetings
that will be held with my supervisor and co-supervisor.
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Figure 7: Research Gantt chart
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