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ABSTRACT
Computer-aided drug design (CADD) projects start with a
computational search for active molecules that form a com-
plex with a protein to trigger a response or block its func-
tion. This report presents the initial investigation being car-
ried out to build a multi-level and scalable approach where
multiple small-molecules and proteins similarity networks
are bridged via known bindings. Through these networks,
we envision a research to be able to discover new putative
small-molecule binders for a given protein target, and to
find other proteins which are likely to interact with a given
small-molecule. Amongst other things, the latter is also im-
portant for side-effect prediction. A software tool which aids
visualization of these networks will also be built.
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1. INTRODUCTION
We take medicines to cure diseases and to ease symptoms

of an illness. In essence, medicines, or drugs, are compounds
that interact with a biological system to produce a biolog-
ical response. This interaction happens at the molecular
level of living beings. It involves a ligand, typically a small-
molecule, to bind with a targeted protein, a macromolecule
that execute a particular cellular function. When this bind-
ing occurs, it triggers (or blocks) a biological response.

Drug discovery and development is a lengthy, laborious,
and expensive process. For some disease areas, such as anti-
bacterial agents [1], the total cost to market a new drug
cannot be recuperated in sales. In recent years, the use of in
silico chemistry and molecular modelling for computer-aided
drug design (CADD), chemoinformatics, gained a significant
momentum [2]. Medicinal clinics and laboratories are col-
lecting more information about their findings and diagnos-
tics, producing a large volume and valuable data for drug
design. Large organisations such as the European Bioinfor-
matics Institute (EBI) and National Center of Biotechnology
Information (NCBI) in the US, formed with their mission to
collect and publish freely public biological data to the sci-
entific community.

Drug design starts by identifying a valid target, such as
a protein which has a link with the disease under scrutiny.
Once this target is identified, scientists start to search for a

compound that when it binds with it, a biological response
is triggered or blocked. Considering the enormous chemical
space of 1060 compounds, finding a molecule that triggers
the required biological response is not an easy task. Al-
though only a portion of this space is appropriate to in-
teract with biological targets, the number of valid com-
pounds is still huge in the range of tens of millions of com-
pounds. For example, ZINC database contains over 100
million purchasable compounds. An in silico drug design
process that facilitates this search is virtual screening, the
computational analogue of biological screening. Its aim is
to filter a set of molecules from a larger set by scoring and
ranking these structures using computational algorithms to
help researchers take decisions on the tasks being carried
out, such as deciding which compounds to purchase from
external sources. It enables medicinal chemists to select a
much smaller and manageable set to work with from the
huge chemical space in the scale of millions, making it pop-
ular and important in the drug discovery process as reported
by Jorgensen [18]. Virtual screening approaches can be di-
vided into two main techniques, namely, structure-based and
ligand-based [22]. Both approaches bring their own chal-
lenges. A major difficulty with structure-based approach is
due to the many degrees of freedom involved in docking two
irregular shapes in a 3D space. On the other hand, ligand-
based techniques are indirect drug design methods that rely
on the knowledge of other ligands that are known to bind
with the target protein. Searching for similar ligands is espe-
cially challenging due to the multi-parameter combinatorial
explosion of possible ligand-to-ligand matching. The more
molecular parameters one wants to match, such as weight,
shape, and structure, the bigger are the computational task.

Motivated by the importance of ligand-based virtual screen-
ing in drug design and the challenges aforementioned, this
research exploits the benefits of clustered computing and
the use of different search algorithms to propose a novel ap-
proach to discover new putative ligand binders for a given
target protein.

The progress report presented here is split into seven sec-
tions. After this brief introduction to the subject, the aims
and objectives of the study are presented. Next is the back-
ground research and literature review followed by the pro-
posed solution together with an overview of the dataset be-
ing used and resources needed. Following these is an evalu-
ation plan, a list of references, and a project timeline.
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2. AIMS AND OBJECTIVES

2.1 Aims
Exploiting the benefits of ligand-based virtual screening

and the large volume of public data available in various
molecular chemistry databases, the aim of this study is to
research a novel approach to discover new putative ligand
binders for a given target protein from multiple similarity
search algorithms results.

2.2 Objectives
The aims above will be accomplished by fulfilling the fol-

lowing objectives:
• Build a multi-level and scalable platform accessible via

a web application through which it will be possible to
discover new putative ligand binders for a given target
protein.
• Determine the significance of using multiple ligand sim-

ilarity algorithms to find a putative target.
• Investigate the effectiveness of different protein simi-

larity algorithms to find new lead drug compounds.

3. BACKGROUND RESEARCH AND LITER-
ATURE REVIEW

In 1998, Brown coined the term chemoinformatics to de-
fine “the mixing of information resources to transform data
into information, and information into knowledge, for the
intended purpose of making better decisions faster in the
arena of drug lead identification and optimisation” [8]. To-
day, chemoinformatics has a much broader sense, and is de-
fined as “the application of informatics methods to solve
chemical problems” [12].

At the heart of computational drug design and discov-
ery is virtual screening. Data for virtual screening comes
from several sources. Of particular interest to this research
is the ChEMBL Open Data database [13]. The data in
this database is regularly updated by manually abstracting
binding, functional, and ADMET (absorption, distribution,
metabolism, excretion, and toxicity properties as assessed
in in vivo reports) information from primary published lit-
erature. This data is then further curated and standard-
ized. Standardization allows data from different databases
to be compared and used together. Wilton et al have sug-
gested that there are three classes under ligand-based virtual
screening methods (machine learning techniques, pharmacophore-
based design, and similarity searching) and one class un-
der structure-based methods (protein-ligand docking) [34].
All these methods depend on the amount of structural and
bioactivity data available.

Structure-based drug design is about identifying a com-
pound for in vitro testing based on the knowledge of the
drug’s 3D structure. The process involves docking of can-
didate ligands to a target and through scoring functions es-
timate the likelihood that this binding trigger or block a
biological response [19, 20].

Pharmacophore-based techniques involve the creation of
a model that contains the molecular features required for
structurally diverse ligands to likely bind to a common re-
ceptor site on the target protein [29]. Chemical similarity
searching approach offers a complementary alternative to
pharmacophore-based technique. Here, a query compound
is used to search a database of compounds to find similar

ones [33]. The result is then sorted in decreasing similarity
order and the top compounds are said to be likely to exhibit
the same activity by Patterson’s neighbourhood behaviour
principle [25]. Machine learning techniques’ objective is to
construct a model that can identify relationships between
the chemical structure and the observed activity. Leach and
Gillet [22] presents a survey how these algorithms are used
in chemoinformatics applications. In these techniques, data
from High-Throughput Screening (a mass automated sys-
tem for in vitro screening) is often classified as ‘active’ or
‘inactive’. The aim is to derive a mathematical model that
predicts the activity class of new structures. Additionally,
methods for non-specific targets have been developed. An
example of such a technique is the prediction of the like-
lihood that a molecule has “drug-like” characteristics and
possesses desired physiochemical properties. Amongst these
methods are substructure filters to eliminate molecules that
are known to be inappropriate starting points for drug dis-
covery and Lipinski’s rule of five which describe the molec-
ular properties important to drug like compounds [23]. Sev-
eral efforts have been made to combine ligand and structure
based virtual screening in order to exploit the benefits of
both techniques, example [11, 30].

As ligand databases became more popular, there was the
need to standardise virtual representation of small molecules.
In 1985, Wiswesser proposed an improved system over the
1954 Wisesser Line Notation named Simplified Molecular
Input Line System (SMILES) [32]. SMILES is nowadays a
standard line notation for representing small molecule struc-
tures using ASCII strings (see Figure 1 for an example). It
must be noted that there are usually different but equally
valid SMILES descriptors for the same structure, thus mak-
ing SMILES not ideal for indexing the molecules. For exam-
ple, the structure of ethanol can be represented as C(O)C,
CCO, and OCC. Canonicalization algorithms have been de-
veloped aiming to create a unique SMILES string. How-
ever, the canonical SMILE representation depends on the
canonicalization algorithm used. In 2005, the International
Chemical Identifier (InChi) algorithm was released as open
source [15]. The purpose of InChi and the hash-key version
InChiKey is to provide an unambiguous way to index and
search all chemical structures.

Figure 1: Molecular representation for Aspirin

As SMILES describe ligands, the FASTA format repre-
sents a linear sequence of amino acids in a protein, see Fig-
ure 2. Amino acids, the building blocks of proteins, are
represented using single ASCII characters. A sequence is
divided into two parts, a description line and the sequence
representation. The Protein Data Bank (PDB), established
in 1971 is one of the most commonly used database for pro-
tein structures.
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Figure 2: (a) FASTA and (b) Amino Acid sequence

Similarity searching is central to medicinal chemistry [24],
and as in almost any other field, it is very subjective. As
such, many computational similarity methods have been in-
troduced. Maggiora et al. point out that there are three
basic components required for a suitable molecular similar-
ity measure: molecular or chemical feature representation, a
potential weighing of features, and a similarity function [24].
Further, in their perspective paper, Maggiora and his team
identify seven views of similarity: chemical, molecular, 2D,
3D, biological, global, and local similarities. They discuss
at length the difference in similarity perspective between
a trained medicinal chemist and that obtained by compu-
tational means. Kutchukian et al. argue that medicinal
chemists intuition is critical for the success of modern drug
discovery as interpreting in chemical terms the result of a
“black-box approach” of many machine learning techniques
is many-a-times impossible to do [21]. To address the sub-
jectivity issue, algorithms that yield a numerical readout
that can quantify similarity are used. One popular, simple,
and fast function is the Tanimoto coefficient (Tc) [31]. It
compares the features of two molecules and returns a score
between 0 (no similarity) and 1 (similar). A Tc value of 0.85
is a commonly used threshold that reflects a high probabil-
ity that two molecules share the same activity [24]. Other
functions, such as torsion fingerprint deviation compares the
molecular shape [27]. Molecular fingerprints are used as an
input to similarity functions. A fingerprint is usually a bit-
vector, sometimes as large as 4kbits, that represent the pres-
ence or absence of particular features in a molecule. For
example, if 1011012 is the molecular fingerprint for m1 and
0011112 of m2, where each bit represents the presence (1) or
absence (0) of a specific molecular feature, using equation 1
produces a Tanimoto coefficient of 2

3
.

Tc(X,Y ) =

∑
i(Xi ∧ Yi)∑
i(Xi ∨ Yi)

(1)

Proteins in FASTA format, represented by a long string
of ASCII characters are matched using sequence alignment
algorithms, such as the Basic Local Alignment Search Tool
(BLAST) [3]. At the core of a sequence alignment algorithm
is the scoring system. A simple and basic approach is to in-
crease the score when two sequence parts match and deduct
the score when a mismatch or a gap in sequence is encoun-
tered. Figure 3 demonstrates a simple alignment. Scores
are typically stored in a scoring matrix and can be calcu-
lated both heuristically and probabilistically. Substitution
matrices, such as point acceptance mutation (PAM) [10] and
blocks substitution matrix (BLOSUM) series [16], are nor-
mally used to add weights to matching score in terms of gene

mutation.

Figure 3: Simple sequence alignment

The next section discusses the work carried out so far and
the proposed solution.

4. PROPOSED SOLUTION
This section discusses the practical part of the study. It

outlines the tests and evaluations done so far, the proposed
solution, the dataset, and the hardware and software needed.
A plan to complete the research is given in Appendix A.

4.1 Practical research carried out
After researching the main topics discussed in the “Back-

ground Research and Literature Review” section, several
practical tasks and evaluations were carried out.

The first practical task was to create a ligand similarity
graph. For this task, one hundred random compounds in
SMILES format from the ZINC database were downloaded
and a Morgan fingerprint for each was computed. Then, an
upper triangular similarity matrix using Tanimoto function
was created and was used to build a graph in Neo4j, a highly
scalable native graph database. Similarly, a sample of pro-
tein FASTA files were used to create a protein similarity
matrix using BLAST algorithm and imported into Neo4j to
graph the relationship between proteins.

Next, the ChEMBL database was used to extract ligand-
protein bindings. This allowed the bridging between the lig-
ands and the proteins graphs. Figure 4 shows these compo-
nents and their expected similarity matrix dimensions using
ChEMBL data. A simple web interface, similar to Figure 8,
was created using D3 javascript library to represent graphs.

Figure 4: Ligands and Protein Graphs

The large volume of data, for example 24GB of com-
pressed ASCII sequences of non-redundant protein sequence
dataset, and the massive amount of similarity computation
tasks requires a scalable solution. Apache Spark proved to
be a good fit for this purpose. An environment with two
Spark worker nodes and one master node was created. Each
node ran a number of similarity functions written as PyS-
park jobs and the result was consolidated at the master node.
The prototype cluster ran on a local machine and no bench-
marks were taken; the purpose of this test was of a proof of
concept nature. At this point, GraphFrames, a graph API
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that runs on top of Apache Spark was evaluated. A test sim-
ilar to the one done using Neo4j was carried out and proved
to be a satisfactory alternative with the benefit that there
is no need for the data to be duplicated on two systems; one
on Neo4j for graph processing and analysis, and another on
Apache Hadoop’s HFDS for use by Spark jobs.

4.2 Solution outline
The proposed solution evolves around the known ligand-

protein bindings and the similarity concept; the more fea-
tures that one can match, the higher the probability that
the query ligand can bind with the target protein.

Two datasets, one for ligands L and another for proteins
P are prepared. For set L, a number of similarity matri-
ces M with dimension |L| × |L| are created. Each matrix
m ∈ M represents the similarity coefficients of each lig-
and l ∈ L with all other ligands in L − l for a partic-
ular feature f . For example, a matrix m1 can represent
the similarity coefficients of all ligands in the dataset using
Morgan fingerprints and Tanimoto function, while another
matrix, m2 can represent the 3D-shape similarities using
torsion fingerprint deviation. Given a query ligand q and
a threshold ξ, one can find similar ligands in mf such that
simq = {∀ l, (q ∼ l) ≤ ξ}, where ‘∼’ can be any similarity
function of choice. A typical process to create a similarity
matrix is outlined next:

1. For n: 1 to |L| do:
1.1. fln = fingerprint(ln)

2. For m: 1 to |L| do:
2.1. For n: 1 to |L| do:

2.1.1. sim(m,n) = flm ∼ fln

Figure 5: Simple similarity matrix algorithm

In Figure 5, fl is a Morgan or other molecular fingerprint
and sim is a similarity function such as Tversky. If sim is
a symmetrical function such as Tanimoto, the inner loop at
step 2.1. can be optimised to start from m+1 and create an
upper triangular matrix instead a full one.

Graph G is a weighted bipartite graph joining sets L and
P , where the weights represent the binding affinity between
ligands and proteins. Given that simq ⊂ L, using G, one
can walk from ligands in set simq to P , see Figure 6. Us-
ing the similarity knowledge about simq and the links in
G, one can suggest that the missing links in G can possibly
be putative bindings. For example, in Figure 6, given that
q is similar to l1, l2, l3, and l4, using Petterson’s similarity
principle [25] one can say that there is a possibility that q
binds to p1, p2, and p3. Further, doing the above test using
different similarity functions, one can say that the more fre-
quent a particular edge is present across different runs, the
higher the probability that this binding can be successful in
in vitro testing. Likewise, this hypothesis is valid to start
from looking for similar p ∈ P using similarity algorithms
such as BLAST and walk back to L to find possible ligand
binders.

Using Figure 6 and the above description, the proposed
search solution can algorithmically be listed as in Figure 7.

The final solution shall provide a web application to allow
similarity algorithms parameter configuration, user input for
querying data, and result visualisation. The main features
of this user interface are summarised in Table 1 and a sample
UI mock is shown in Figure 8.

Figure 6: Putative Ligands-Protein binding

1. Let q be the query ligand.
2. Find all ligands similar to q in L using a particular simi-

larity algorithm and threshold ξ.
3. Let {simq} be the resultant set from step 2.
4. Using the neighbourhood similarity principle, one can say

that q can potentially binds with all proteins that ligands
in {simq} bind to.

5. Repeat steps 2. to 4. for different similarity algorithms.
The more frequent a binding edge appears in different sim-
ilarity algorithms, the higher the probability that the
binding is successful in in vitro testing.

Figure 7: Search algorithm

4.3 Dataset
Throughout this research, ChEMBL data (version 22) is

used [13]. First, data related to Homo Sapiens (identified by
taxonomy id 9606) was extracted and categorised into two
sets, namely the ligands set L and the proteins set P . The
number of samples extracted and cleaned from ChEMBL are
described in Table 2. These two sets form the disjoint sets of
a bipartite graph G, whose edges correspond to the ligand-
protein binding, each weighted by the complex formation
affinity recorded in ChEMBL. The edges are represented by
set E in Table 2.

With the ligands and proteins datasets at hand different
similarity matrices will be created. This is a long process
that creates a lot of data and requires a lot of resources. The
data structures are estimated to be a 710, 767×710, 767 ma-
trix for each ligand similarity matrix, a little less than 3 mil-
lion weighted edge bipartite graph, and a directed weighted
graph of 2,888 nodes per protein similarity graph.

4.4 Hardware and Software
The prototypes can be carried out on normal i7 desktop

machines. However, to handle the full dataset, a larger in-
frastructure is required. The plan is to run the full solution
on an Apache Hadoop cluster [5] and the similarity func-
tions, see Figure 5 step 2.1.1., run as Apache Spark jobs
[6]. The latter is chosen over MapReduce for the following
reasons:
• Spark does more processing in memory and uses less

disk IO, making it faster. An interesting function of
Spark is that it does lazy evaluation. That is, Spark
only loads the data when it is asked to be returned
from a function. Thus, Spark is able to optimise mul-
tiple map transformations and reduce operations by
analysing if it can skip or merge certain tasks.
• Spark’s real-time characteristic facilitates the similar-
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Table 1: Visual tool features
Ligands Bindings Target Proteins

Similarity matrices for ligands:
• Different similarity measures,
such as, Tanimoto, Dice, and
Tvesky.

Graph Visualisation:
• Node size = node degree
• Node shape = circle
• Filter by similarity factor, e.g.
Tc >0.85
• Group by ligand’s compound
properties
• On node hover show molecule
data, such as structure and
properties

Ligands-Proteins binding is a
weighted bipartite graph built from
ChEMBL data.

Visualisation tool features:
• Filter by binding strength
• Filter by node (ligand or
protein) degree

Graph:
• Edge width = binding strength

Similarity matrix for proteins using
BLAST+ and/or other algorithms

Visualisation:
• Group by protein classification
• Filter by protein classification

Graph:
• Node size = node degree
• Node shape = square
• Node color = protein classifi-
cation
• On node hover show protein
data

Figure 8: Visualization mock

Table 2: ChEMBL data (Homo Sapiens)

Set Number of items in set

Ligands L 710,767

Proteins P 2,888

Bindings E 2,930,127

ity matrix creation jobs execution.
• A big advantage of Spark is that it unifies a lot of in-

terfaces like SQL and Graph frameworks into a single
abstraction of Resilient Distributed Data. Thus it re-
moves the need of multiple independent solutions and
the overhead to integrate the results.

All machines will run Ubuntu open source operating sys-
tem. Cluster automation scripts will be written in Bash,
the visual tool in HTML5 and leveraging D3 potential to
display interactive graphs, back-end programming will be
carried out in Python, and documentation in LATEX. Other
packages that will be used during the research include:
• Spark’s package GraphFrames [4] will be used to pro-

cess graph data on Hadoop.
• RDKit library [26] to create ligand fingerprints and

run similarity functions.
• BIOPython [9] is used to process FASTA files and run

BLAST queries.

5. EVALUATION PLAN
Evaluation of the proposed solution is not straight for-

ward. The aim of the research is to help medicinal chemists
to discover new possible ligand-protein bindings, and mea-
suring novelty is very difficult [7]. This is because the re-
search is recommending a binding that the user does not
know about.

At this juncture, it is important to note that the absence
of a binding between a ligand and a protein in ChEMBL
database does not mean that the pair do not bind, but it
can mean that this binding was never recorded. This is
analogous to the challenge imposed by offline recommender
systems prediction evaluation [14]. To assume that the ab-
sence of a ligand-protein link in ChEMBL means that the
pair do not form a complex inflate the number of false posi-
tives. Thus, evaluation metrics that are based on false posi-
tive outcome do not fully apply to this type of solution [14].

The evaluation is to be done by filtering out known bind-
ings from the dataset and confirm that the solution returns
these bindings in the top recommended results. The metric
will be to count the number of putative bindings discovered
out of the total number of bindings in the testing dataset.
For this, the k -fold cross validation technique will be used.
For each k experiments, k-1 folds will be used as the known
ligand-protein binding set and the remaining fold will be
used for testing.

Two types of experiments will be carried out with the
aim to estimate the accuracy of recommending molecules
that are likely to bind with a given target and vice-versa.
The first type tests the proposed solution’s putative target
protein recommendation accuracy. Here, the ligands set will
be k -folded and the unseen set will be fed to the system
(as described in Figure 7) and confirm the recommended
bindings. A successful recommendation is considered to be
one that there is a known binding in ChEMBL database.
The second type of experiments is a mirror image of the
first. That is, the proteins set will be k -folded. As in the
first type of experiments, a successful recommendation is
considered to be one for which a binding exist in the full
dataset.

The ultimate evaluation can be the testing of a newly
unseen small-molecule and find putative targets and con-
firm the result via a competitive assay binding experiment
[17]. This latter set of experiments requires wet laboratory
resources which are not available at this time. If the pos-
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sibility arises, a great evaluation will be to ask a group of
medicinal researchers to use the software tool being devel-
oped and pass their feedback about the tool as a whole, its
performance, and if it helped them in their research.
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APPENDIX
A. PROJECT PLAN

This research is being carried out on part-time basis over a period of 1 year. The final research will be presented as the
dissertation for a masters level in Artificial Intelligence. The methodology framework of choice is Scrum with a two week
Sprint and a Velocity of four points, confer [28]. Table 3 outlines the User Stories (main tasks) identified, their respective
Scrum Points, and Sprint Number when these tasks are going to be carried out. The purpose of using Scrum is to have a
deliverable by the end of each Sprint, thus effort can be measured and the Supervisor and Co-Supervisor are kept up-to-date.

The plan proposed has some contingency to compensate impediments that may hinder the completion of a particular User
Story in time. This contingency is added in two forms, (a) all tasks are to be completed a couple of weeks prior the deadline,
and (b) some repetitive User Story may take less time as the framework needed will be already implemented in previous ones.

7



Table 3: Project Plan

Start End Sprint Number Story Number Story Points Description

20-06-2016 03-07-2016 1 0 Done Discussion and research about proposal

04-07-2016 17-07-2016 2 10 Done Reading about Chemoinformatics, virtual
screening, and molecule fingerprinting

11 Done Researching and creating a similarity matrix
for 100 random molecules (ligands)

18-07-2016 31-07-2016 3 20 Done Introduction to proteins, Protein Data Bank,
and reading of related literature

01-08-2016 14-08-2016 4 21 Done Introduction to BLAST and exeperimenting
with local BLAST

15-08-2016 28-08-2016 5 22 Done Implementation of protein similarity matrix
for random 100 proteins

29-08-2016 11-09-2016 - - - -

12-09-2016 25-09-2016 6 23 Done Continue protein similarity matrix and upload-
ing data to Neo4j

26-09-2016 09-10-2016 7 30 Done Introduction to D3

10-10-2016 23-10-2016 8 40 Done Introduction to ChEMBL and create a D3
graph showing molecule and ligand bindings

24-10-2016 06-11-2016 9 50 Done Introduction and building a Spark cluster

07-11-2016 20-11-2016 10 51 Done Researching GraphFrames on Spark

21-11-2016 04-12-2016 11 60 Done Implement distributed BLAST and Tanimoto
similarity using PySpark

05-12-2016 11-12-2016 12 61 Done Working on progress report

12-12-2016 25-12-2016 13 100 1 Dataset preparation

200 3 Automate Apache Hadoop and SPARK cluster
installation

26-12-2016 08-01-2017 14 300 4 Implementation and documentation of ligands
graph creation and analysis framework

09-01-2017 22-01-2017 15 400 4 Design, implement, and document ligands sim-
ilarity matrices creation

23-01-2017 05-02-2017 16 500 4 Design and setup of web application frame-
work

06-02-2017 19-02-2017 17 501 3 Documentation of web application framework

600 1 Design search for similar ligands

20-02-2017 05-03-2017 - - - -

06-03-2017 19-03-2017 18 601 4 Implement and document search for similar
ligands

20-03-2017 02-04-2017 19 700 4 Design, implement, and document Protein
similarity matrices creation

03-04-2017 16-04-2017 20 800 4 Design and implement search for similar pro-
teins

17-04-2017 30-04-2017 21 801 2 Document search for similar proteins

01-05-2017 14-05-2017 22 900 4 Design, implement, and document bipartite
graph

15-05-2017 28-05-2017 23 1000 4 Implement highlight of graph walks from query
ligand to target protein (Part I)

29-05-2017 11-06-2017 24 1001 1 Implement highlight of graph walks from query
ligand to target protein (Part II)

1002 3 Document highlight of graph walks from query
ligand to target protein

12-06-2017 25-06-2017 25 1100 4 Implement highlight of graph walks from query
protein to ligand (Part I)

26-06-2017 09-07-2017 26 1101 1 Implement highlight of graph walks from query
protein to ligand (Part II)

1102 1 Document highlight of graph walks from query
protein to ligand

10-07-2017 23-07-2017 27 1200 4 Evaluation and analysis

24-07-2017 06-08-2017 28 1201 4 Documentation related to User Story 1200

07-08-2017 20-08-2017 29 1300 4 Review write-up

21-08-2017 03-09-2017 30 1301 4 Finalize write-up
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